MyJournals Home  

RSS FeedsMolecules, Vol. 24, Pages 1999: Phenolic Compounds from Populus alba L. and Salix subserrata Willd. (Salicaceae) Counteract Oxidative Stress in Caenorhabditis elegans (Molecules)

 
 

24 may 2019 21:02:30

 
Molecules, Vol. 24, Pages 1999: Phenolic Compounds from Populus alba L. and Salix subserrata Willd. (Salicaceae) Counteract Oxidative Stress in Caenorhabditis elegans (Molecules)
 




Utilizing bioassay- and TLC-guided column chromatography, fifteen secondary metabolites from Populus alba and eight compounds from Salix subserrata were isolated, including a novel plant metabolite salicyl ether and characterized using ultralviolet light (UV) absorbance, mass spectrometry (MS), 1H-, 13C-NMR (nuclear magnetic resonance), heteronuclear single quantum coherence spectroscopy (HSQC) and heteronuclear multiple bond correlation (HMBC). The extracts, their sub-fractions and the isolated compounds exhibited promising antioxidant activities in vitro in DPPH and FRAP assays. Also, the extracts of P. alba leaf (PL), shoots (PS), and S. subserrata leaf (SL) demonstrated substantial antioxidant activities in vivo in the multicellular model organism Caenorhabditis elegans. For the first time, the isolated secondary metabolites, aromadendrin, tremuloidin, salicin, isorhamnetin-3-O-β-d-rutinoside, gallocatechin, triandrin, and chrysoeriol-7-O-glucuronide were investigated. They exhibited substantial antioxidant activities in vivo. Salicin, isorhamnetin-3-O-β-d-rutinoside and gallocatechin, in particular, protected the worms against a lethal dose of the pro-oxidant juglone (80 µM), decreased the endogenous reactive oxygen species (ROS) level to 45.34%, 47.31%, 68.09% and reduced juglone- induced hsp-16.2::GFP (green fluorescence protein) expression to 79.62%, 70.17%, 26.77%, respectively. However, only gallocatechin induced higher levels of sod-3 expression. These findings support the traditional use of Populus alba and Salix subserrata for treating inflammation especially when ROS are involved.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
33 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 24, Pages 2000: Correction: Mishra, S.K. and Suryaprakash, N. Intramolecular Hydrogen Bonding Involving Organic Fluorine: NMR Investigations Corroborated by DFT-Based Theoretical Calculations: Molecules 2017, 22, 423 (Molecules)
Molecules, Vol. 24, Pages 1998: Evaluation of Phytochemical and Antioxidant Properties of 15 Italian Olea europaea L. Cultivar Leaves (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn