MyJournals Home  

RSS FeedsAlgorithms, Vol. 12, Pages 118: Deep Learning with a Recurrent Network Structure in the Sequence Modeling of Imbalanced Data for ECG-Rhythm Classifier (Algorithms)

 
 

7 june 2019 23:03:07

 
Algorithms, Vol. 12, Pages 118: Deep Learning with a Recurrent Network Structure in the Sequence Modeling of Imbalanced Data for ECG-Rhythm Classifier (Algorithms)
 


The interpretation of Myocardial Infarction (MI) via electrocardiogram (ECG) signal is a challenging task. ECG signals’ morphological view show significant variation in different patients under different physical conditions. Several learning algorithms have been studied to interpret MI. However, the drawback of machine learning is the use of heuristic features with shallow feature learning architectures. To overcome this problem, a deep learning approach is used for learning features automatically, without conventional handcrafted features. This paper presents sequence modeling based on deep learning with recurrent network for ECG-rhythm signal classification. The recurrent network architecture such as a Recurrent Neural Network (RNN) is proposed to automatically interpret MI via ECG signal. The performance of the proposed method is compared to the other recurrent network classifiers such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The objective is to obtain the best sequence model for ECG signal processing. This paper also aims to study a proper data partitioning ratio for the training and testing sets of imbalanced data. The large imbalanced data are obtained from MI and healthy control of PhysioNet: The PTB Diagnostic ECG Database 15-lead ECG signals. According to the comparison result, the LSTM architecture shows better performance than standard RNN and GRU architecture with identical hyper-parameters. The LSTM architecture also shows better classification compared to standard recurrent networks and GRU with sensitivity, specificity, precision, F1-score, BACC, and MCC is 98.49%, 97.97%, 95.67%, 96.32%, 97.56%, and 95.32%, respectively. Apparently, deep learning with the LSTM technique is a potential method for classifying sequential data that implements time steps in the ECG signal.


 
104 viewsCategory: Informatics
 
Algorithms, Vol. 12, Pages 117: Iterative Numerical Scheme for Non-Isothermal Two-Phase Flow in Heterogeneous Porous Media (Algorithms)
Algorithms, Vol. 12, Pages 120: Integration of Production Planning and Scheduling Based on RTN Representation under Uncertainties (Algorithms)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Informatics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten