MyJournals Home  

RSS FeedsIJMS, Vol. 20, Pages 2910: Dedifferentiation of Primary Hepatocytes is Accompanied with Reorganization of Lipid Metabolism Indicated by Altered Molecular Lipid and miRNA Profiles (International Journal of Molecular Sciences)

 
 

14 june 2019 20:02:49

 
IJMS, Vol. 20, Pages 2910: Dedifferentiation of Primary Hepatocytes is Accompanied with Reorganization of Lipid Metabolism Indicated by Altered Molecular Lipid and miRNA Profiles (International Journal of Molecular Sciences)
 




Aim: Primary human hepatocytes (PHHs) undergo dedifferentiation upon the two-dimensional (2D) culture, which particularly hinders their utility in long-term in vitro studies. Lipids, as a major class of biomolecules, play crucial roles in cellular energy storage, structure, and signaling. Here, for the first time, we mapped the alterations in the lipid profile of the dedifferentiating PHHs and studied the possible role of lipids in the loss of the phenotype of PHHs. Simultaneously, differentially expressed miRNAs associated with changes in the lipids and fatty acids (FAs) of the dedifferentiating PHHs were investigated. Methods: PHHs were cultured in monolayer and their phenotype was monitored morphologically, genetically, and biochemically for five days. The lipid and miRNA profile of the PHHs were analyzed by mass spectrometry and Agilent microarray, respectively. In addition, 24 key genes involved in the metabolism of lipids and FAs were investigated by qPCR. Results: The typical morphology of PHHs was lost from day 3 onward. Additionally, ALB and CYP genes were downregulated in the cultured PHHs. Lipidomics revealed a clear increase in the saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) containing lipids, but a decrease in the polyunsaturated fatty acids (PUFA) containing lipids during the dedifferentiation of PHHs. In line with this, FASN, SCD, ELOVL1, ELOVL3, and ELOVL7 were upregulated but ELOVL2 was downregulated in the dedifferentiated PHHs. Furthermore, differentially expressed miRNAs were identified, and the constantly upregulated miR-27a and miR-21, and downregulated miR-30 may have regulated the synthesis, accumulation and secretion of PHH lipids during the dedifferentiation. Conclusion: Our results showed major alterations in the molecular lipid species profiles, lipid-metabolizing enzyme expression as wells as miRNA profiles of the PHHs during their prolonged culture, which in concert could play important roles in the PHHs’ loss of phenotype. These findings promote the understanding from the dedifferentiation process and could help in developing optimal culture conditions, which better meet the needs of the PHHs and support their original phenotype.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
12 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 20, Pages 2911: Nervous-Like Circuits in the Ribosome Facts, Hypotheses and Perspectives (International Journal of Molecular Sciences)
IJMS, Vol. 20, Pages 2908: Biocontrol and Action Mechanism of Bacillus amyloliquefaciens and Bacillus subtilis in Soybean Phytophthora Blight (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn