MyJournals Home  

RSS FeedsSensors, Vol. 19, Pages 2737: Corrections of BDS Code Multipath Error in Geostationary Orbit Satellite and Their Application in Precise Data Processing (Sensors)

 
 

19 june 2019 00:00:06

 
Sensors, Vol. 19, Pages 2737: Corrections of BDS Code Multipath Error in Geostationary Orbit Satellite and Their Application in Precise Data Processing (Sensors)
 




Multipath error is a main error source in Global Navigation Satellite System (GNSS) data processing, which cannot be removed by a differential technique because of the strong relationship with the environment around the station. The multipath effect of the code observables is more complex than that of the carrier-phase observables, especially for BeiDou Navigation Satellite System (BDS) geostationary orbit (GEO) satellites. In this contribution, we deeply analyzed the characteristic and effect on the precise data processing of GEO satellite multipath errors based on a large number of permanent GNSS stations. A linear combination of code and carrier-phase observables was used to analyze the characteristics of repeatability for BDS GEO’s multipath. Then, a correction method was proposed to eliminate the multipath error of the GEO code observables, based on wavelet transform. The experiment data were collected at 83 globally distributed stations, from multi-GNSS experiments and national BDS augmentation systems, from days 32 to 66 in 2017. The results show that the systematic multipath variation component of the GEO code observables can be obtained with wavelet transform, which can significantly contribute to correcting the multipath error of GEO satellites. The average root mean square error (RMSE) of the multipath series is decreased by approximately 19.5%, 20.2%, and 7.5% for B1, B2, and B3, respectively. In addition, some experiments, including ionospheric delay extraction and satellite clock estimation, were conducted in simulated real-time mode in order to validate the effect of the correction methods. For the ionospheric delay estimation, the average RMSE of the slant ionospheric delay is reduced by approximately 15.5%. Moreover, the multipath correction can contribute greatly to shortening the convergence time of the satellite clock estimation of the BDS GEO satellites.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
63 viewsCategory: Chemistry, Physics
 
Sensors, Vol. 19, Pages 2738: Classification for Human Balance Capacity Based on Visual Stimulation under a Virtual Reality Environment (Sensors)
Sensors, Vol. 19, Pages 2736: Exploration of Chlorophyll a Fluorescence and Plant Gas Exchange Parameters as Indicators of Drought Tolerance in Perennial Ryegrass (Sensors)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn