MyJournals Home  

RSS FeedsMolecules, Vol. 24, Pages 2275: Selective Recovery of Zinc from Metallurgical Waste Materials from Processing Zinc and Lead Ores (Molecules)

 
 

19 june 2019 09:03:05

 
Molecules, Vol. 24, Pages 2275: Selective Recovery of Zinc from Metallurgical Waste Materials from Processing Zinc and Lead Ores (Molecules)
 


A method for processing of metallurgical waste materials (chemically defined as sulfur-bearing zinc-ferric materials) produced by plants processing zinc ores and their concentrates is proposed. The method proposed is a combination of pyro- and hydrometallurgical treatments of the waste material. The crucial steps in the developed method include: roasting the material at 450 °C to generate sulfur dioxide (SO2), absorption of SO2 in an aqueous system to form sulfuric acid (IV), carbothermic decomposition of zinc ferrite compounds, and leaching of zinc from the roasted material using sulfuric (IV) acid. The method allows one to extract up to 40% of zinc from the waste material and, consequently, to generate a fraction of material with substantially higher content of iron oxides. The proposed method takes advantage of the presence of sulfur in the processed material which upon roasting is converted to sulfuric acid (IV)--a leaching agent for selective extraction of zinc. The properly adjusted pH of the aqueous medium in which the leaching process is carried out is the key factor determining the quantitative and selective separation of zinc. If the amount of sulfur in the processed material is insufficient, it may be supplemented by adding sulfuric acid (VI) to adjust the pH. The method proposed was tested at a laboratory scale and quarter industrial scale using the real samples taken from stockpiles in the vicinity of the plant processing zinc and lead ores in Poland. It may also work for any zinc-ferric materials from various sources.


 
98 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 24, Pages 2276: Non-Targeted LC-MS/MS Assay for Screening Over 100 Lipid Mediators from ARA, EPA, and DHA in Biological Samples Based on Mass Spectral Fragmentations (Molecules)
Molecules, Vol. 24, Pages 2286: Khellactone Derivatives and Other Phenolics of Phlojodicarpus sibiricus (Apiaceae): HPLC-DAD-ESI-QQQ-MS/MS and HPLC-UV Profile, and Antiobesity Potential of Dihydrosamidin (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten