MyJournals Home  

RSS FeedsSensors, Vol. 19, Pages 2745: Slice Management for Quality of Service Differentiation in Wireless Network Slicing (Sensors)

 
 

19 june 2019 14:00:09

 
Sensors, Vol. 19, Pages 2745: Slice Management for Quality of Service Differentiation in Wireless Network Slicing (Sensors)
 




Network slicing is a technology that virtualizes a single infrastructure into multiple logical networks (called slices) where resources or virtualized functions can be flexibly configured by demands of applications to satisfy their quality of service (QoS) requirements. Generally, to provide the guaranteed QoS in applications, resources of slices are isolated. In wired networks, this resource isolation is enabled by allocating dedicated data bandwidths to slices. However, in wireless networks, resource isolation may be challenging because the interference between links affects the actual bandwidths of slices and degrades their QoS. In this paper, we propose a slice management scheme that mitigates the interference imposed on each slice according to their priorities by determining routes of flows with a different routing policy. Traffic flows in the slice with the highest priority are routed into shortest paths. In each lower-priority slice, the routing of traffic flows is conducted while minimizing a weighted summation of interference to other slices. Since higher-priority slices have higher interference weights, they receive lower interference from other slices. As a result, the QoS of slices is differentiated according to their priorities while the interference imposed on slices is reduced. We compared the proposed slice management scheme with a naïve slice management (NSM) method that differentiates QoS among slices by priority queuing. We conducted some simulations and the simulation results show that our proposed management scheme not only differentiates the QoS of slices according to their priorities but also enhances the average throughput and delay performance of slices remarkably compared to that of the NSM method. The simulations were conducted in grid network topologies with 16 and 100 nodes and a random network topology with 200 nodes. Simulation results indicate that the proposed slice management increased the average throughput of slices up to 6%, 13%, and 7% and reduced the average delay of slices up to 14%, 15%, and 11% in comparison with the NSM method.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
30 viewsCategory: Chemistry, Physics
 
Sensors, Vol. 19, Pages 2747: SmarTEG: An Autonomous Wireless Sensor Node for High Accuracy Accelerometer-Based Monitoring (Sensors)
Materials, Vol. 12, Pages 1978: Preparation, Characterization and Application of Multi-Mode Imaging Functional Graphene Au-Fe3O4 Magnetic Nanocomposites (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn