MyJournals Home  

RSS FeedsSensors, Vol. 19, Pages 2762: Improving Short Term Clock Prediction for BDS-2 Real-Time Precise Point Positioning (Sensors)


20 june 2019 02:00:24

Sensors, Vol. 19, Pages 2762: Improving Short Term Clock Prediction for BDS-2 Real-Time Precise Point Positioning (Sensors)

Although there are already several real-time precise positioning service providers, unfortunately, not all users can use the correction information due to either cost of the service and limitation of their equipment or out of the service coverage. An alternative way is to enhance the accuracy of the predicted satellite clocks for precise real-time positioning. Based on the study of existing prediction models, an improved model combing the spectrum analysis (SA) and the generalized regression neural network (GRNN) model is proposed especially for BeiDou satellite navigation system (BDS)-2 satellites. The periodic terms and GRNN-related parameters including length and interval of sample data, as well as a smooth factor, are optimized satellite by satellite to consider satellite-specific characteristics for all the fourteen BDS-2 satellites. The improved model is validated by comparing the predicted clocks of existing models and the improved model with precisely estimated ones. The bias of the predicted clock is within ±0.5 ns over three hours and better than that of the other models and can be used for several real-time precise applications. The clock prediction is further evaluated by applying clock corrections to precise point positioning (PPP) in both static and kinematic mode for eight IGS (International GNSS Service) MGEX (Multi-GNSS Experiment) stations in the Asia-Pacific region. In the static PPP, the improved model is validated to be effective, and position accuracies of some IGS MGEX stations achieve more than 30.0% improvements on average for each component, which enables us to obtain sub-decimeter positioning. In the kinematic PPP, the improved model performs much better than the others in terms of both the convergence time and the position accuracy. The convergence time can be shortened from 1–2 h to 0.5–1 h, while the position accuracy is enhanced by 15.4%, 21.6% and 19.3% on average in east, north and up component, respectively. Digg Facebook Google StumbleUpon Twitter
62 viewsCategory: Chemistry, Physics
Sensors, Vol. 19, Pages 2763: Recent Progress in Self-Powered Skin Sensors (Sensors)
Sensors, Vol. 19, Pages 2761: Handheld Microflow Cytometer Based on a Motorized Smart Pipette, a Microfluidic Cell Concentrator, and a Miniaturized Fluorescence Microscope (Sensors)
blog comments powered by Disqus
The latest issues of all your favorite science journals on one page


Register | Retrieve



Use these buttons to bookmark us: Digg Facebook Google StumbleUpon Twitter

Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn