MyJournals Home  

RSS FeedsStk40 deletion elevates c-JUN protein level and impairs mesoderm differentiation [Protein Synthesis and Degradation] (Journal of Biological Chemistry)

 
 

21 june 2019 16:02:46

 
Stk40 deletion elevates c-JUN protein level and impairs mesoderm differentiation [Protein Synthesis and Degradation] (Journal of Biological Chemistry)
 


Mesoderm development is a finely tuned process initiated by the differentiation of pluripotent epiblast cells. Serine/threonine kinase 40 (STK40) controls the development of several mesoderm-derived cell types, its overexpression induces differentiation of mouse embryonic stem cells (mESCs) toward the extraembryonic endoderm, and Stk40 knockout (KO) results in multiple organ failure and is lethal at the perinatal stage in mice. However, molecular mechanisms underlying the physiological functions of STK40 in mesoderm differentiation remain elusive. Here, we report that Stk40 ablation impairs mesoderm differentiation both in vitro and in vivo. Mechanistically, STK40 interacts with both the E3 ubiquitin ligase mammalian constitutive photomorphogenesis protein 1 (COP1) and the transcriptional regulator proto-oncogene c-Jun (c-JUN), promoting c-JUN protein degradation. Consequently, Stk40 knockout leads to c-JUN protein accumulation, which, in turn, apparently suppresses WNT signaling activity and impairs the mesoderm differentiation process. Overall, this study reveals that STK40, together with COP1, represents a previously unknown regulatory axis that modulates the c-JUN protein level within an appropriate range during mesoderm differentiation from mESCs. Our findings provide critical insights into the molecular mechanisms regulating the c-JUN protein level and may have potential implications for managing cellular disorders arising from c-JUN dysfunction.


 
74 viewsCategory: Biochemistry
 
Prolyl hydroxylase 3 stabilizes the p53 tumor suppressor by inhibiting the p53-MDM2 interaction in a hydroxylase-independent manner [Cell Biology] (Journal of Biological Chemistry)
C-terminal {alpha}-synuclein truncations are linked to cysteine cathepsin activity in Parkinson`s disease [Molecular Bases of Disease] (Journal of Biological Chemistry)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Biochemistry


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten