MyJournals Home  

RSS FeedsMolecules, Vol. 24, Pages 2303: Green Synthesis of Silver Nanoparticles with Culture Supernatant of a Bacterium Pseudomonas rhodesiae and Their Antibacterial Activity against Soft Rot Pathogen Dickeya dadantii (Molecules)

 
 

21 june 2019 16:03:23

 
Molecules, Vol. 24, Pages 2303: Green Synthesis of Silver Nanoparticles with Culture Supernatant of a Bacterium Pseudomonas rhodesiae and Their Antibacterial Activity against Soft Rot Pathogen Dickeya dadantii (Molecules)
 


Bacterial stem and root rot disease of sweet potato caused by Dickeya dadantii recently broke out in major sweet potato planting areas in China and calls for effective approaches to control the pathogen and disease. Here, we developed a simple method for green synthesis of silver nanoparticles (AgNPs) using bacterial culture supernatants. AgNPs synthesized with the cell-free culture supernatant of a bacterium Pseudomonas rhodesiae displayed the characteristic surface plasmon resonance peak at 420–430 nm and as nanocrystallites in diameters of 20–100 nm determined by transmission electron microscopy, scanning electron microscopy, and X-ray diffraction spectroscopy. Functional groups associated with proteins in the culture supernatant may reduce silver ions and stabilize AgNPs. The AgNPs showed antibacterial activities against D. dadantii growth, swimming motility, biofilm formation, and maceration of sweet potato tubers whereas the culture supernatant of P. rhodesiae did not. AgNPs (12 µg·ml−1) and AgNO3 (50 µg·ml−1) showed close antibacterial activities. The antibacterial activities increased with the increase of AgNP concentrations. The green-synthesized AgNPs can be used to control the soft rot disease by control of pathogen contamination of sweet potato seed tubers.


 
69 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 24, Pages 2306: Synthesis, Crystal Structure, and Biological Evaluation of Fused Thiazolo[3,2-a]Pyrimidines as New Acetylcholinesterase Inhibitors (Molecules)
Molecules, Vol. 24, Pages 2305: Possible Synthetic Approaches for Heterobimetallic Complexes by Using nNHC/tzNHC Heteroditopic Carbene Ligands (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten