MyJournals Home  

RSS FeedsSensors, Vol. 19, Pages 2805: Temperature Effects on Electromechanical Response of Deposited Piezoelectric Sensors Used in Structural Health Monitoring of Aerospace Structures (Sensors)

 
 

22 june 2019 12:00:26

 
Sensors, Vol. 19, Pages 2805: Temperature Effects on Electromechanical Response of Deposited Piezoelectric Sensors Used in Structural Health Monitoring of Aerospace Structures (Sensors)
 


Turbomachine components used in aerospace and power plant applications preferably require continuous structural health monitoring at various temperatures. The structural health of pristine and damaged superalloy compressor blades of a gas turbine engine was monitored using real electro-mechanical impedance of deposited thick film piezoelectric transducers at 20 and 200 °C. IVIUM impedance analyzer was implemented in laboratory conditions for damage detection in superalloy blades, while a custom-architected frequency-domain transceiver circuit was used for semi-field circumstances. Recorded electromechanical impedance signals at 20 and 200 °C acquired from two piezoelectric wafer active sensors bonded to an aluminum plate, near and far from the damage, were initially utilized for accuracy and reliability verification of the transceiver at temperatures >20 °C. Damage formation in both the aluminum plate and blades showed a peak shift in the swept frequency along with an increase in the amplitude and number of impedance peaks. The thermal energy at 200 °C, on the other hand, enforces a further subsequent peak shift in the impedance signal to pristine and damaged parts such that the anti-resonance frequency keeps reducing as the temperature increases. The results obtained from the impedance signals of both piezoelectric wafers and piezo-films, revealed that increasing the temperature somewhat decreased the real impedance amplitude and the number of anti-resonance peaks, which is due to an increase in permittivity and capacitance of piezo-sensors. A trend is also presented for artificial intelligence training purposes to distinguish the effect of the temperature versus damage formation in sample turbine compressor blades. Implementation of such a monitoring system provides a distinct advantage to enhance the safety and functionality of critical aerospace components working at high temperatures subjected to crack, wear, hot-corrosion and erosion.


 
109 viewsCategory: Chemistry, Physics
 
Materials, Vol. 12, Pages 1999: A (Permalloy + NiZn Ferrite) Moldable Magnetic Composite for Heterogeneous Integration of Power Electronics (Materials)
Sensors, Vol. 19, Pages 2804: Low-Power Distributed Data Flow Anomaly-Monitoring Technology for Industrial Internet of Things (Sensors)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten