MyJournals Home  

RSS FeedsIJMS, Vol. 20, Pages 3129: Magnesium Deficiency Induced Global Transcriptome Change in Citrus sinensis Leaves Revealed by RNA-Seq (International Journal of Molecular Sciences)

 
 

27 june 2019 00:03:50

 
IJMS, Vol. 20, Pages 3129: Magnesium Deficiency Induced Global Transcriptome Change in Citrus sinensis Leaves Revealed by RNA-Seq (International Journal of Molecular Sciences)
 




Magnesium (Mg) deficiency is one of the major constraining factors that limit the yield and quality of agricultural products. Uniform seedlings of the Citrus sinensis were irrigated with Mg deficient (0 mM MgSO4) and Mg sufficient (1 mM MgSO4) nutrient solutions for 16 weeks. CO2 assimilation, starch, soluble carbohydrates, TBARS content and H2O2 production were measured. Transcriptomic analysis of C. sinensis leaves was performed by Illumina sequencing. Our results showed that Mg deficiency decreased CO2 assimilation, but increased starch, sucrose, TBARS content and H2O2 production in C. sinensis leaves. A total of 4864 genes showed differential expression in response to Mg deficiency revealed by RNA-Seq and the transcriptomic data were further validated by real-time quantitative PCR (RT-qPCR). Gene ontology (GO) enrichment analysis indicated that the mechanisms underlying Mg deficiency tolerance in C. sinensis may be attributed to the following aspects: a) enhanced microtubule-based movement and cell cycle regulation; b) elevated signal transduction in response to biotic and abiotic stimuli; c) alteration of biological processes by tightly controlling phosphorylation especially protein phosphorylation; d) down-regulation of light harvesting and photosynthesis due to the accumulation of carbohydrates; e) up-regulation of cell wall remodeling and antioxidant system. Our results provide a comprehensive insight into the transcriptomic profile of key components involved in the Mg deficiency tolerance in C. sinensis and enrich our understanding of the molecular mechanisms by which plants adapted to a Mg deficient condition.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
45 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 20, Pages 3130: Chronic Pain: Structural and Functional Changes in Brain Structures and Associated Negative Affective States (International Journal of Molecular Sciences)
IJMS, Vol. 20, Pages 3128: Lineage-Specific Evolved MicroRNAs Regulating NB-LRR Defense Genes in Triticeae (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn