MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 1728: A New Approach to Earth`s Gravity Field Modeling Using GPS-Derived Kinematic Orbits and Baselines (Remote Sensing)

 
 

21 july 2019 13:02:54

 
Remote Sensing, Vol. 11, Pages 1728: A New Approach to Earth`s Gravity Field Modeling Using GPS-Derived Kinematic Orbits and Baselines (Remote Sensing)
 


Earth’s gravity field recovery from GPS observations collected by low earth orbiting (LEO) satellites is a well-established technique, and kinematic orbits are commonly used for that purpose. Nowadays, more and more satellites are flying in close formations. The GPS-derived kinematic baselines between them can reach millimeter precision, which is more precise than the centimeter-level kinematic orbits. Thus, it has long been expected that the more precise kinematic baselines can deliver better gravity field solutions. However, this expectation has not been met yet in practice. In this study, we propose a new approach to gravity field modeling, in which kinematic orbits of the reference satellite and baseline vectors between the reference satellite and its accompanying satellite are jointly inverted. To validate the added value, data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are used. We derive kinematic orbits and inter-satellite baselines of the twin GRACE satellites from the GPS data collected in the year of 2010. Then two sets of monthly gravity field solutions up to degree and order 60 are produced. One is derived from kinematic orbits of the twin GRACE satellites (‘orbit approach’). The other is derived from kinematic orbits of GRACE A and baseline vectors between GRACE A and B (‘baseline approach’). Analysis of observation postfit residuals shows that noise in the kinematic baselines is notably lower than the kinematic orbits by 50, 47 and 43% for the along-track, cross-track and radial components, respectively. Regarding the gravity field solutions, analysis in the spectral domain shows that noise of the gravity field solutions beyond degree 10 can be significantly reduced when the baseline approach is applied, with cumulative errors up to degree 60 being reduced by 34%, when compared to the orbit approach. In the spatial domain, the recovered mass changes with the baseline approach are more consistent with those inferred from the K-Band Ranging based solutions. Our results demonstrate that the proposed baseline approach is able to provide better gravity field solutions than the orbit approach. The findings may facilitate, among others, bridging the gap between GRACE and GRACE Follow-On satellite mission.


 
198 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 1727: Automatic Building Outline Extraction from ALS Point Clouds by Ordered Points Aided Hough Transform (Remote Sensing)
Remote Sensing, Vol. 11, Pages 1726: Automatic Vector-Based Road Structure Mapping Using Multibeam LiDAR (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten