MyJournals Home  

RSS FeedsIJMS, Vol. 20, Pages 3964: Rehmannia glutinosa Libosch Extracts Prevent Bone Loss and Architectural Deterioration and Enhance Osteoblastic Bone Formation by Regulating the IGF-1/PI3K/mTOR Pathway in Streptozotocin-Induced Diabetic Rats (International Journal of Molecular Sciences)

 
 

15 august 2019 08:04:33

 
IJMS, Vol. 20, Pages 3964: Rehmannia glutinosa Libosch Extracts Prevent Bone Loss and Architectural Deterioration and Enhance Osteoblastic Bone Formation by Regulating the IGF-1/PI3K/mTOR Pathway in Streptozotocin-Induced Diabetic Rats (International Journal of Molecular Sciences)
 


Rehmanniae Radix Praeparata (RR, named as Shudihuang in traditional Chinese medicine), the steamed roots of Rehmannia glutinosa Libosch (Scrophulariaceae), has been demonstrated to have anti-diabetic and anti-osteoporotic activities. This study aimed to explore the protective effect and underlying mechanism of RR on diabetes-induced bone loss. It was found that RR regulated the alkaline phosphatase activity and osteocalcin level, enhanced bone mineral density, and improved the bone microarchitecture in diabetic rats. The catalpol (CAT), acteoside (ACT), and echinacoside (ECH) from RR increased the proliferation and differentiation of osteoblastic MC3T3-E1 cells injured by high glucose and promoted the production of IGF-1 and expression of related proteins in BMP and IGF-1/PI3K/mammalian target of rapamycin complex 1 (mTOR) signaling pathways. The verifying tests of inhibitors of BMP pathway (noggin) and IGF-1/PI3K/mTOR pathway (picropodophyllin) and molecular docking of IGF-1R further indicated that CAT, ACT, and ECH extracted from RR enhanced bone formation by regulating IGF-1/PI3K/mTOR signaling pathways. These findings suggest that RR may prove to be a promising candidate drug for the prevention and treatment of diabetes-induced osteoporosis.


 
401 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 20, Pages 3965: Reaction Kinetic Models of Antibiotic Heteroresistance (International Journal of Molecular Sciences)
IJMS, Vol. 20, Pages 3974: A Novel Peptide Ameliorates LPS-Induced Intestinal Inflammation and Mucosal Barrier Damage via Its Antioxidant and Antiendotoxin Effects (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten