MyJournals Home  

RSS FeedsSensors, Vol. 19, Pages 3576: Automatic Extraction of Water and Shadow from SAR Images Based on a Multi-Resolution Dense Encoder and Decoder Network (Sensors)

 
 

16 august 2019 15:00:11

 
Sensors, Vol. 19, Pages 3576: Automatic Extraction of Water and Shadow from SAR Images Based on a Multi-Resolution Dense Encoder and Decoder Network (Sensors)
 


The water and shadow areas in SAR images contain rich information for various applications, which cannot be extracted automatically and precisely at present. To handle this problem, a new framework called Multi-Resolution Dense Encoder and Decoder (MRDED) network is proposed, which integrates Convolutional Neural Network (CNN), Residual Network (ResNet), Dense Convolutional Network (DenseNet), Global Convolutional Network (GCN), and Convolutional Long Short-Term Memory (ConvLSTM). MRDED contains three parts: the Gray Level Gradient Co-occurrence Matrix (GLGCM), the Encoder network, and the Decoder network. GLGCM is used to extract low-level features, which are further processed by the Encoder. The Encoder network employs ResNet to extract features at different resolutions. There are two components of the Decoder network, namely, the Multi-level Features Extraction and Fusion (MFEF) and Score maps Fusion (SF). We implement two versions of MFEF, named MFEF1 and MFEF2, which generate separate score maps. The difference between them lies in that the Chained Residual Pooling (CRP) module is utilized in MFEF2, while ConvLSTM is adopted in MFEF1 to form the Improved Chained Residual Pooling (ICRP) module as the replacement. The two separate score maps generated by MFEF1 and MFEF2 are fused with different weights to produce the fused score map, which is further handled by the Softmax function to generate the final extraction results for water and shadow areas. To evaluate the proposed framework, MRDED is trained and tested with large SAR images. To further assess the classification performance, a total of eight different classification frameworks are compared with our proposed framework. MRDED outperformed by reaching 80.12% in Pixel Accuracy (PA) and 73.88% in Intersection of Union (IoU) for water, 88% in PA and 77.11% in IoU for shadow, and 95.16% in PA and 90.49% in IoU for background classification, respectively.


 
332 viewsCategory: Chemistry, Physics
 
Materials, Vol. 12, Pages 2612: Mesoporous Palladium N,N`-Bis(3-Allylsalicylidene)o-Phenylenediamine-Methyl Acrylate Resins as Heterogeneous Catalysts for the Heck Coupling Reaction (Materials)
Sensors, Vol. 19, Pages 3577: M-ary Cyclic Shift Keying Spread Spectrum Underwater Acoustic Communications Based on Virtual Time-Reversal Mirror (Sensors)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten