MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 1940: Structure from Motion Point Clouds for Structural Monitoring (Remote Sensing)


20 august 2019 10:00:23

Remote Sensing, Vol. 11, Pages 1940: Structure from Motion Point Clouds for Structural Monitoring (Remote Sensing)

Dense point clouds acquired from Terrestrial Laser Scanners (TLS) have proved to be effective for structural deformation assessment. In the last decade, many researchers have defined methodology and workflow in order to compare different point clouds, with respect to each other or to a known model, assessing the potentialities and limits of this technique. Currently, dense point clouds can be obtained by Close-Range Photogrammetry (CRP) based on a Structure from Motion (SfM) algorithm. This work reports on a comparison between the TLS technique and the Close-Range Photogrammetry using the Structure from Motion algorithm. The analysis of two Reinforced Concrete (RC) beams tested under four-points bending loading is presented. In order to measure displacement distributions, point clouds at different beam loading states were acquired and compared. A description of the instrumentation used and the experimental environment, along with a comprehensive report on the calculations and results obtained is reported. Two kinds of point clouds comparison were investigated: Mesh to mesh and modeling with geometric primitives. The comparison between the mesh to mesh (m2m) approach and the modeling (m) one showed that the latter leads to significantly better results for both TLS and CRP. The results obtained with the TLS for both m2m and m methodologies present a Root Mean Square (RMS) levels below 1 mm, while the CRP method yields to an RMS level of a few millimeters for m2m, and of 1 mm for m. Digg Facebook Google StumbleUpon Twitter
46 viewsCategory: Geology, Physics
Remote Sensing, Vol. 11, Pages 1942: Pattern Statistics Network for Classification of High-Resolution SAR Images (Remote Sensing)
Remote Sensing, Vol. 11, Pages 1955: Automatic Extrinsic Self-Calibration of Mobile Mapping Systems Based on Geometric 3D Features (Remote Sensing)
blog comments powered by Disqus
The latest issues of all your favorite science journals on one page


Register | Retrieve



Use these buttons to bookmark us: Digg Facebook Google StumbleUpon Twitter

Valid HTML 4.01 Transitional
Copyright © 2008 - 2020 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn