MyJournals Home  

RSS FeedsIJMS, Vol. 20, Pages 4081: Functional Characterization of a Drought-Responsive Invertase Inhibitor from Maize (Zea mays L.) (International Journal of Molecular Sciences)

 
 

21 august 2019 14:00:20

 
IJMS, Vol. 20, Pages 4081: Functional Characterization of a Drought-Responsive Invertase Inhibitor from Maize (Zea mays L.) (International Journal of Molecular Sciences)
 




Invertases (INVs) play essential roles in plant growth in response to environmental cues. Previous work showed that plant invertases can be post-translationally regulated by small protein inhibitors (INVINHs). Here, this study characterizes a proteinaceous inhibitor of INVs in maize (Zm-INVINH4). A functional analysis of the recombinant Zm-INVINH4 protein revealed that it inhibited both cell wall and vacuolar invertase activities from maize leaves. A Zm-INVINH4::green fluorescent protein fusion experiment indicated that this protein localized in the apoplast. Transcript analysis showed that Zm-INVINH4 is specifically expressed in maize sink tissues, such as the base part of the leaves and young kernels. Moreover, drought stress perturbation significantly induced Zm-INVINH4 expression, which was accompanied with a decrease of cell wall invertase (CWI) activities and an increase of sucrose accumulation in both base parts of the leaves 2 to 7 days after pollinated kernels. In description, the results support the hypothesis that INV-related sink growth in response to drought treatment is (partially) caused by a silencing of INV activity via drought-induced induction of Zm-INVINH4 protein.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
19 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 20, Pages 4082: Pachypodol, a Methoxyflavonoid Isolated from Pogostemon cablin Bentham Exerts Antioxidant and Cytoprotective Effects in HepG2 Cells: Possible Role of ERK-Dependent Nrf2 Activation (International Journal of Molecular Sciences)
IJMS, Vol. 20, Pages 4080: Off-Stoichiometric Reactions at the Cell-Substrate Biomolecular Interface of Biomaterials: In Situ and Ex Situ Monitoring of Cell Proliferation, Differentiation, and Bone Tissue Formation (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn