MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 1966: Automated Built-Up Extraction Index: A New Technique for Mapping Surface Built-Up Areas Using LANDSAT 8 OLI Imagery (Remote Sensing)

 
 

21 august 2019 16:00:30

 
Remote Sensing, Vol. 11, Pages 1966: Automated Built-Up Extraction Index: A New Technique for Mapping Surface Built-Up Areas Using LANDSAT 8 OLI Imagery (Remote Sensing)
 




Accurate built-up area extraction is one of the most critical issues in land-cover classification. In previous studies, various techniques have been developed for built-up area extraction using Landsat images. However, the efficiency of these techniques under different technical and geographical conditions, especially for bare and sandy areas, is not optimal. One of the main challenges of built-up area extraction techniques is to determine an optimum and stable threshold with the highest possible accuracy. In many of these techniques, the optimum threshold value fluctuates substantially in different parts of the image scene. The purpose of this study is to provide a new index to improve built-up area extraction with a stable optimum threshold for different environments. In this study, the developed Automated Built-up Extraction Index (ABEI) is presented to improve the classification accuracy in areas containing bare and sandy surfaces. To develop and evaluate the accuracy of the new method for built-up area extraction with Landsat 8 OLI reflective bands, five test sites located in the Iranian cities (Babol, Naqadeh, Kashmar, Bam and Masjed Soleyman), eleven European cities (Athens, Brussels, Bucharest, Budapest, Ciechanow, Hamburg, Lyon, Madrid, Riga, Rome and Porto) and high resolution layer imperviousness (HRLI) data were used. Each site has varying environmental and complex surface coverage conditions. To determine the optimal weights for each of the Landsat 8 OLI reflective bands, the pure pixel sets for different classes and the improved gravitational search algorithm (IGSA) optimization were used. The Kappa coefficient and overall error were calculated to evaluate the accuracy of the built-up extraction map. Additionally, the ABEI performance was compared with the urban index (UI) and normalized difference built-up index (NDBI) performances. In each of the five test sites and eleven cities, the extraction accuracy of the built-up areas using the ABEI was higher than that using the UI, and NDBI (P-value of 0.01). The relative standard deviations of the optimal threshold values for the ABEI and UI were 27 and 155% (at five test sites) and were 16 and 37% (at eleven European cities), respectively, which indicates the stability of the ABEI threshold value when the location and environmental conditions change. The results of this study demonstrated that the ABEI can be used to extract built-up areas from other land covers. This index is effective even in bare soil and sandy areas, where other indices experience major challenges.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
31 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 1969: An Accurate Method to Correct Atmospheric Phase Delay for InSAR with the ERA5 Global Atmospheric Model (Remote Sensing)
Remote Sensing, Vol. 11, Pages 1967: Mask Sparse Representation Based on Semantic Features for Thermal Infrared Target Tracking (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn