MyJournals Home  

RSS FeedsMaterials, Vol. 12, Pages 2666: Experimental Investigation on the Quasi-Static Tensile Capacity of Engineered Cementitious Composites Reinforced with Steel Grid and Fibers (Materials)

 
 

21 august 2019 17:03:12

 
Materials, Vol. 12, Pages 2666: Experimental Investigation on the Quasi-Static Tensile Capacity of Engineered Cementitious Composites Reinforced with Steel Grid and Fibers (Materials)
 


An engineered cementitious composite (ECC) was reinforced with a steel grid and fibers to improve its tensile strength and ductility. A series of tensile tests have been carried out to investigate the quasi-static tensile capacity of the reinforced ECC. The quasi-static tensile capacities of reinforced ECCs with different numbers of steel-grid layers, types of fibers (Polyvinyl alcohol (PVA) fiber, KEVLAR fiber, and polyethylene (PE) fiber), and volume fractions of fibers have been tested and compared. It is indicated by the test results that: (1) On the whole, the steel grid-PVA fiber and steel grid-KEVLAR fiber reinforced ECCs have high tensile strength and considerable energy dissipation performance, while the steel grid-PE fiber reinforced ECC exhibits excellent ductility. (2) The ultimate tensile strength of the reinforced ECC can be improved by the addition of steel grids. The maximal peak tensile stress increase is about 50–95% or 140–190% by adding one layer or two layers of steel grid, respectively. (3) The ultimate tensile strength of the reinforced ECC can be enhanced with the increase of fiber volume fraction. For a certain kind of fiber, a volume fraction between 1.5% and 2% grants the reinforced ECC the best tensile strength. Near the ultimate loading point, the reinforced ECC exhibits strain hardening behavior, and its peak tensile stress increases considerably. The energy dissipation performance of the reinforced ECC can also be remarkably enhanced by such an increase in fiber volume fraction. (4) The ductility of the steel grid-PVA fiber reinforced ECC can be improved by the addition of steel grids and the increase of fiber volume fraction. The ductility of the steel grid-KEVLAR fiber reinforced ECC can be improved by the addition of steel grids alone. The ductility and energy dissipation performance of the steel grid-PE fiber reinforced ECC can be improved with the increase of fiber volume fraction alone. A mechanical model for the quasi-static initial and ultimate tensile strength of the steel grid-fiber reinforced ECC is proposed. The model is validated by the test data from the quasi-static tension experiments on the steel grid-PE fiber reinforced ECC.


 
201 viewsCategory: Chemistry, Physics
 
Materials, Vol. 12, Pages 2659: Fabrication and Characteristics of Heavily Fe-Doped LiNbO3/Si Heterojunction (Materials)
Materials, Vol. 12, Pages 2665: Prediction of Carbonation Progress in Concrete Containing Calcareous Fly Ash Co-Binder (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten