MyJournals Home  

RSS FeedsMaterials, Vol. 12, Pages 2670: Crystallization Features of Amorphous Rapidly Quenched High Cu Content TiNiCu Alloys upon Severe Plastic Deformation (Materials)

 
 

22 august 2019 10:03:47

 
Materials, Vol. 12, Pages 2670: Crystallization Features of Amorphous Rapidly Quenched High Cu Content TiNiCu Alloys upon Severe Plastic Deformation (Materials)
 




In recent years, the methods of severe plastic deformation and rapid melt quenching have proven to be an effective tool for the formation of the unique properties of materials. The effect of high-pressure torsion (HPT) on the structure of the amorphous alloys of the quasi-binary TiNi–TiCu system with a copper content of more than 30 at.% produced by melt spinning technique has been analyzed using the methods of scanning electron microscopy, X-ray diffraction analysis, and differential scanning calorimetry (DSC). The structure examinations have shown that the HPT of the alloys with a Cu content ranging from 30 to 40 at.% leads to nanocrystallization from the amorphous state. An increase in the degree of deformation leads to a substantial change in the character of the crystallization reflected by the DSC curves of the alloys under study. The alloys containing less than 34 at.% Cu exhibit crystallization peak splitting, whereas the alloys containing more than 34 at.% Cu exhibit a third peak at lower temperatures. The latter effect suggests the formation of regions of possible low-temperature crystallization. It has been established that the HPT causes a significant decrease in the thermal effect of crystallization upon heating of the alloys with a high copper content relative to that of the initial amorphous melt quenched state.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
21 viewsCategory: Chemistry, Physics
 
Materials, Vol. 12, Pages 2672: Variation of Mechanical Characteristics of Polyurethane Foam: Effect of Test Method (Materials)
Sensors, Vol. 19, Pages 3649: A Novel Differential High-Frequency Current Transformer Sensor for Series Arc Fault Detection (Sensors)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn