MyJournals Home  

RSS FeedsMolecules, Vol. 24, Pages 3051: Anti-Osteoporotic and Anti-Adipogenic Effects of the Water Extract of Drynaria roosii Nakaike in Ovariectomized Mice Fed a High-Fat Diet (Molecules)

 
 

22 august 2019 13:00:10

 
Molecules, Vol. 24, Pages 3051: Anti-Osteoporotic and Anti-Adipogenic Effects of the Water Extract of Drynaria roosii Nakaike in Ovariectomized Mice Fed a High-Fat Diet (Molecules)
 


In traditional oriental medicine, Drynaria roosii Nakaike is widely used in treating bone diseases. Postmenopausal women are strongly associated with osteoporosis and obesity. This study aimed to investigate the effects of the water extract of D. roosii (WDR) on bone loss and obesity in ovariectomized (OVX) mice fed a high-fat diet (HFD). Body weight, gonadal fat weight, histological findings, and morphometric parameters in trabecular bone were evaluated after OVX mice were treated with WDR and HFD for four weeks. The receptor activator of nuclear κ-B ligand (RANKL)-induced osteoclast differentiation in bone marrow-derived macrophages (BMMs) was examined. Phytochemical identification of WDR using ultrahigh-performance liquid chromatography–tandem mass spectrometry was performed. WDR reversed the changes in body weight gain, gonadal fat mass, and trabecular bone parameters by ovariectomy. However, ovariectomy-induced uterine atrophy was not affected by WDR. WDR decreased adipocyte size and pro-inflammatory cytokines (interleukin (IL)-1β and IL-6) in gonadal fats and lipid accumulation in the bone marrow, which were induced by ovariectomy. WDR significantly decreased RANKL-induced osteoclast differentiation in BMMs. Fifteen phytochemicals were identified in WDR: Seven and nine with anti-osteoporotic and anti-adipogenic activities, respectively. Our findings suggest that WDR may have beneficial effects on postmenopausal osteoporosis and obesity.


 
191 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 24, Pages 3052: Microwave-Assisted Extraction Combined with In-Capillary [Fe(ferrozine)3]2+-CE-DAD to Screen Active Components with the Ability to Chelate Ferrous Ions from Flos Sophorae Immaturus (Flos Sophorae) (Molecules)
Molecules, Vol. 24, Pages 3050: Encapsulation of Metal Nanoparticles within Metal-Organic Frameworks for the Reduction of Nitro Compounds (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten