MyJournals Home  

RSS FeedsSensors, Vol. 19, Pages 3667: Sensors Driven AI-Based Agriculture Recommendation Model for Assessing Land Suitability (Sensors)

 
 

23 august 2019 19:00:54

 
Sensors, Vol. 19, Pages 3667: Sensors Driven AI-Based Agriculture Recommendation Model for Assessing Land Suitability (Sensors)
 




The world population is expected to grow by another two billion in 2050, according to the survey taken by the Food and Agriculture Organization, while the arable area is likely to grow only by 5%. Therefore, smart and efficient farming techniques are necessary to improve agriculture productivity. Agriculture land suitability assessment is one of the essential tools for agriculture development. Several new technologies and innovations are being implemented in agriculture as an alternative to collect and process farm information. The rapid development of wireless sensor networks has triggered the design of low-cost and small sensor devices with the Internet of Things (IoT) empowered as a feasible tool for automating and decision-making in the domain of agriculture. This research proposes an expert system by integrating sensor networks with Artificial Intelligence systems such as neural networks and Multi-Layer Perceptron (MLP) for the assessment of agriculture land suitability. This proposed system will help the farmers to assess the agriculture land for cultivation in terms of four decision classes, namely more suitable, suitable, moderately suitable, and unsuitable. This assessment is determined based on the input collected from the various sensor devices, which are used for training the system. The results obtained using MLP with four hidden layers is found to be effective for the multiclass classification system when compared to the other existing model. This trained model will be used for evaluating future assessments and classifying the land after every cultivation.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
25 viewsCategory: Chemistry, Physics
 
Sensors, Vol. 19, Pages 3668: An Approach to Dynamic Sensing Data Fusion (Sensors)
Sensors, Vol. 19, Pages 3666: Graphene-Enhanced Surface Plasmon Resonance Liquid Refractive Index Sensor Based on Photonic Crystal Fiber (Sensors)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn