MyJournals Home  

RSS FeedsIJMS, Vol. 20, Pages 4127: Cortical Seizures in FoxG1+/- Mice are Accompanied by Akt/S6 Overactivation, Excitation/Inhibition Imbalance and Impaired Synaptic Transmission (International Journal of Molecular Sciences)

 
 

24 august 2019 12:00:06

 
IJMS, Vol. 20, Pages 4127: Cortical Seizures in FoxG1+/- Mice are Accompanied by Akt/S6 Overactivation, Excitation/Inhibition Imbalance and Impaired Synaptic Transmission (International Journal of Molecular Sciences)
 


The correct morphofunctional shaping of the cerebral cortex requires a continuous interaction between intrinsic (genes/molecules expressed within the tissue) and extrinsic (e.g., neural activity) factors at all developmental stages. Forkhead Box G1 (FOXG1) is an evolutionarily conserved transcription factor, essential for the cerebral cortex patterning and layering. FOXG1-related disorders, including the congenital form of Rett syndrome, can be caused by deletions, intragenic mutations or duplications. These genetic alterations are associated with a complex phenotypic spectrum, spanning from intellectual disability, microcephaly, to autistic features, and epilepsy. We investigated the functional correlates of dysregulated gene expression by performing electrophysiological assays on FoxG1+/− mice. Local Field Potential (LFP) recordings on freely moving animals detected cortical hyperexcitability. On the other hand, patch-clamp recordings showed a downregulation of spontaneous glutamatergic transmission. These findings were accompanied by overactivation of Akt/S6 signaling. Furthermore, the expression of vesicular glutamate transporter 2 (vGluT2) was increased, whereas the level of the potassium/chloride cotransporter KCC2 was reduced, thus indicating a higher excitation/inhibition ratio. Our findings provide evidence that altered expression of a key gene for cortical development can result in specific alterations in neural circuit function at the macro- and micro-scale, along with dysregulated intracellular signaling and expression of proteins controlling circuit excitability.


 
179 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 20, Pages 4128: ZO-2 Is a Master Regulator of Gene Expression, Cell Proliferation, Cytoarchitecture, and Cell Size (International Journal of Molecular Sciences)
IJMS, Vol. 20, Pages 4126: Aggregation States of A?1-40, A?1-42 and A?p3-42 Amyloid Beta Peptides: A SANS Study (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten