MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 2148: Estimating Peanut Leaf Chlorophyll Content with Dorsiventral Leaf Adjusted Indices: Minimizing the Impact of Spectral Differences between Adaxial and Abaxial Leaf Surfaces (Remote Sensing)

 
 

15 september 2019 14:00:33

 
Remote Sensing, Vol. 11, Pages 2148: Estimating Peanut Leaf Chlorophyll Content with Dorsiventral Leaf Adjusted Indices: Minimizing the Impact of Spectral Differences between Adaxial and Abaxial Leaf Surfaces (Remote Sensing)
 


Relatively little research has assessed the impact of spectral differences among dorsiventral leaves caused by leaf structure on leaf chlorophyll content (LCC) retrieval. Based on reflectance measured from peanut adaxial and abaxial leaves and LCC measurements, this study proposed a dorsiventral leaf adjusted ratio index (DLARI) to adjust dorsiventral leaf structure and improve LCC retrieval accuracy. Moreover, the modified Datt (MDATT) index, which was insensitive to leaves structure, was optimized for peanut plants. All possible wavelength combinations for the DLARI and MDATT formulae were evaluated. When reflectance from both sides were considered, the optimal combination for the MDATT formula was ( R 723 − R 738 ) / ( R 723 − R 722 ) with a cross-validation R2cv of 0.91 and RMSEcv of 3.53 μg/cm2. The DLARI formula provided the best performing indices, which were ( R 735 − R 753 ) / ( R 715 − R 819 ) for estimating LCC from the adaxial surface (R2cv = 0.96, RMSEcv = 2.37 μg/cm2) and ( R 732 − R 754 ) / ( R 724 − R 773 ) for estimating LCC from reflectance of both sides (R2cv = 0.94, RMSEcv = 2.81 μg/cm2). A comparison with published vegetation indices demonstrated that the published indices yielded reliable estimates of LCC from the adaxial surface but performed worse than DLARIs when both leaf sides were considered. This paper concludes that the DLARI is the most promising approach to estimate peanut LCC.


 
321 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 2149: KLUM: An Urban VNIR and SWIR Spectral Library Consisting of Building Materials (Remote Sensing)
Remote Sensing, Vol. 11, Pages 2147: Hyperspectral Endmember Extraction Using Spatially Weighted Simplex Strategy (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten