MyJournals Home  

RSS FeedsEnergies, Vol. 12, Pages 3592: Optimization of Greenhouse Thermal Screens for Maximized Energy Conservation (Energies)

 
 

20 september 2019 14:03:43

 
Energies, Vol. 12, Pages 3592: Optimization of Greenhouse Thermal Screens for Maximized Energy Conservation (Energies)
 


In this work, we proposed a Building Energy Simulation (BES) dynamic climatic model of greenhouses by utilizing Transient System Simulation (TRNSYS 18) software to study the effect of use of different thermal screen materials and control strategies of thermal screens on heat energy requirement of greenhouses. Thermal properties of the most common greenhouse thermal screens were measured and used in the BES model. Nash-Sutcliffe efficiency coefficients of 0.84 and 0.78 showed good agreement between the computed and experimental results, thus the proposed model appears to be appropriate for performing greenhouse thermal simulations. The proposed model was used to evaluate the effects of different thermal screens including; Polyester, Luxous, Tempa, and Multi-layers, as well as to evaluate control strategies of greenhouse thermal screens, subjected to Daegu city, (latitude 35.53 °N, longitude 128.36 °E) South Korea winter season weather conditions. Obtained results show that the heating requirement of greenhouses with multi-layer night thermal screens was 20%, 5.4%, and 13.5%, less than the Polyester, Luxous, and Tempa screens respectively. Thus, our experiments confirm that the use of multi-layered thermal screen can reduce greenhouse heat energy requirement. Furthermore, screen-control with outside solar radiation at an optimum setpoint of 60 W·m−2 significantly influences the greenhouse’s energy conservation capacity, as it exhibited 699.5 MJ · m−2, the least energy demand of all strategies tested. Moreover, the proposed model allows dynamic simulation of greenhouse systems and enables researchers and farmers to evaluate different screens and screen control strategies that suit their investment capabilities and local weather conditions.


 
160 viewsCategory: Biophysics, Biotechnology, Physics
 
Energies, Vol. 12, Pages 3593: Design and Implementation of a Speed-Loop-Periodic-Controller-Based Fault-Tolerant SPMSM Drive System (Energies)
Energies, Vol. 12, Pages 3591: Ancillary Services in Hybrid AC/DC Low Voltage Distribution Networks (Energies)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten