MyJournals Home  

RSS FeedsMaterials, Vol. 12, Pages 3068: Effect of Ultrasonic Nanocrystal Surface Modification on the Microstructure and Martensitic Transformation of Selective Laser Melted Nitinol (Materials)

 
 

20 september 2019 19:03:39

 
Materials, Vol. 12, Pages 3068: Effect of Ultrasonic Nanocrystal Surface Modification on the Microstructure and Martensitic Transformation of Selective Laser Melted Nitinol (Materials)
 


Nitinol has significant potential for biomedical and actuating-sensing devices, thanks to its functional properties. The use of selective laser melting (SLM) with Nitinol powder can promote novel applications aimed to produce 3D complex parts with integrated functional performances. As the final step of the production route, finishing processing needs to be investigated both for the optimization of the surface morphology and the limit alteration of the Nitinol functional properties. In this work, the effect of an advanced method of surface modification, ultrasonic nanocrystal surface modification (UNSM), on the martensitic transformation and microstructure of SLM built Ni50.8Ti49.2 (at.%) was investigated. Scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry indicated that the UNSM process can generate stress-induced martensite, at least partially suppressing the martensitic transformation. The microhardness profile indicates that the UNSM process can affect the mechanical properties of the SLMed Nitinol sample in a range of up to approximately 750 μm in depth from the upper surface, while electron backscatter diffraction analysis highlighted that the initial austenitic phase was modified within a depth below 200 μm from the UNSMed surface.


 
178 viewsCategory: Chemistry, Physics
 
Materials, Vol. 12, Pages 3069: Effect of Copper Tailing Content on Corrosion Resistance of Steel Reinforcement in a Salt Lake Environment (Materials)
Materials, Vol. 12, Pages 3070: Prediction and Analysis of the Residual Capacity of Concrete-Filled Steel Tube Stub Columns under Axial Compression Subjected to Combined Freeze-Thaw Cycles and Acid Rain Corrosion (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten