MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 2206: Microwave Land Emissivity Calculations over the Qinghai-Tibetan Plateau Using FY-3B/MWRI Measurements (Remote Sensing)


20 september 2019 21:00:08

Remote Sensing, Vol. 11, Pages 2206: Microwave Land Emissivity Calculations over the Qinghai-Tibetan Plateau Using FY-3B/MWRI Measurements (Remote Sensing)

The Qinghai-Tibetan plateau plays an important role in climate change with its unique characteristics, and the surface emissivity is an important parameter to describe the surface characteristics. It is also very important for the accurate retrieval of surface and atmospheric parameters. Different types of surface features have their own radiation characteristics due to their differences in structure, water content and roughness. In this study, the microwave land surface emissivity (10.65, 18.7, 23.8, 36.5 and 89 GHz) of the Qinghai-Tibetan Plateau was calculated using the simplified microwave radiation transmission equation under clear atmospheric conditions based on Level 1 brightness temperatures from the Microwave Radiation Imager onboard the FY-3B meteorological satellite (FY-3B/MWRI) and the National Centers for Environmental Prediction Final (NCEP-FNL) Global Operational Analysis dataset. Furthermore, according to the IGBP (International Geosphere-Biosphere Program) classified data, the spectrum and spatial distribution characteristics of microwave surface emittance in Qinghai-Tibetan plateau were further analyzed. The results show that almost all 16 types of emissivity from IGBP at dual-polarization (vertical and horizontal) increase with the increase of frequency. The spatial distribution of the retrieving results is in line with the changes of surface cover types on the Qinghai-Tibetan plateau, showing the distribution characteristics of large polarization difference of surface emissivity in the northwest and small polarization difference in the southeast, and diverse vegetation can be clearly seen in the retrieving results. In addition, the emissivity is closely related to the type of land surface. Since the emissivity of vegetation is higher than that of bare soil, the contribution of bare soil increases and the surface emissivity decreases as the density of vegetation decreases. Finally, the source of retrieval error was analyzed. The errors in calculating the surface emissivity might mainly come from spatiotemporal collocation of reanalysis data with satellite measurements, the quality of these auxiliary datasets and cloud and precipitation pixel discrimination scheme. Further quantitative analysis of these errors is required, and even standard procedures may need to be improved as well to improve the accuracy of the calculation. Digg Facebook Google StumbleUpon Twitter
45 viewsCategory: Geology, Physics
Remote Sensing, Vol. 11, Pages 2192: Decreasing Trend of Geohazards Induced by the 2008 Wenchuan Earthquake Inferred from Time Series NDVI Data (Remote Sensing)
Remote Sensing, Vol. 11, Pages 2209: Quantitative Phenotyping of Northern Leaf Blight in UAV Images Using Deep Learning (Remote Sensing)
blog comments powered by Disqus
The latest issues of all your favorite science journals on one page


Register | Retrieve



Use these buttons to bookmark us: Digg Facebook Google StumbleUpon Twitter

Valid HTML 4.01 Transitional
Copyright © 2008 - 2020 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn