MyJournals Home  

RSS FeedsMaterials, Vol. 12, Pages 3086: Experimental Investigation on Micro-Groove Manufacturing of Ti-6Al-4V Alloy by Using Ultrasonic Elliptical Vibration Assisted Cutting (Materials)

 
 

21 september 2019 15:02:35

 
Materials, Vol. 12, Pages 3086: Experimental Investigation on Micro-Groove Manufacturing of Ti-6Al-4V Alloy by Using Ultrasonic Elliptical Vibration Assisted Cutting (Materials)
 


The micro-groove structure on the planar surface has been widely used in the tribology field for improving the lubrication performance, thereby reducing the friction coefficient and wear. However, in the conventional cutting (CC) process, the high-quality, high-precision machining of the micro-groove on titanium alloy has always been a challenge, because considerable problems including poor surface integrity and a high level of the material swelling and springback remain unresolved. In this study, the ultrasonic elliptical vibration assisted cutting (UEVC) technology was employed, which aimed to minimize the level of the material swelling and springback and improve the machining quality. A series of comparative investigations on the surface defect, surface roughness, and material swelling and springback under the CC and UEVC processes were performed. The experimental results certified that the material swelling and springback significantly reduced and the surface integrity obviously improved in the UEVC process in comparison to that in the CC process. Furthermore, for all the predetermined depths of the cut, when the TSR (the ratio of the nominal cutting speed to the peak horizontal vibration speed) was equal to one of twenty four or one of forty eight, the accuracy of the machined micro-groove depth, width and the profile radius reached satisfactorily to 98%, and the roughness values were approximately 0.1 μm. The experimental results demonstrate that the UEVC technology is a feasible method for the high-quality and high-precision processing of the micro-groove on Ti-6Al-4V alloy.


 
220 viewsCategory: Chemistry, Physics
 
Materials, Vol. 12, Pages 3080: Hyaluronic Acid-Conjugated with Hyperbranched Chlorin e6 Using Disulfide Linkage and Its Nanophotosensitizer for Enhanced Photodynamic Therapy of Cancer Cells (Materials)
Materials, Vol. 12, Pages 3085: Bending Load-Carrying Capacity of Reinforced Concrete Beams Subjected to Premature Failure (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten