MyJournals Home  

RSS FeedsEntropy, Vol. 21, Pages 977: A Complexity-Entropy Based Approach for the Detection of Fish Choruses (Entropy)

 
 

6 october 2019 18:03:07

 
Entropy, Vol. 21, Pages 977: A Complexity-Entropy Based Approach for the Detection of Fish Choruses (Entropy)
 


Automated acoustic indices to infer biological sounds from marine recordings have produced mixed levels of success. The use of such indices in complex marine environments, dominated by several anthropogenic and geophonic sources, have yet to be understood fully. In this study, we introduce a noise resilient method based on complexity-entropy (hereafter named C-H) for the detection of biophonic sounds originating from fish choruses. The C-H method was tested on data collected in Changhua and Miaoli (Taiwan) during the spring in both 2016 and 2017. Miaoli was exposed to continual shipping activity, which led to an increase of ~10 dB in low frequency ambient noise levels (5–500 Hz). The acoustic dataset was successively analyzed via the acoustic complexity index, the acoustic diversity index and the bioacoustic index. The C-H method was found to be strongly correlated with fish chorusing (Pearson correlation: rH < −0.9; rC > 0.89), and robust to noise originating from shipping activity or natural sources, such as wind and tides (rH and rC were between 0.22 and −0.19). Other indices produced lower or null correlations with fish chorusing due to missed identification of the choruses or sensitivity to other sound sources. In contrast to most acoustic indices, the C-H method does not require a prior setting of frequency and amplitude thresholds, and is therefore, more user friendly to untrained technicians. We conclude that the use of the C-H method has potential implications in the efficient detection of fish choruses for management or conservation purposes and could help with overcoming the limitations of acoustic indices in noisy marine environments.


 
317 viewsCategory: Informatics, Physics
 
Entropy, Vol. 21, Pages 971: Fuzzy Coordination Control Strategy and Thermohydraulic Dynamics Modeling of a Natural Gas Heating System for in Situ Soil Thermal Remediation (Entropy)
Entropy, Vol. 21, Pages 976: Markov Information Bottleneck to Improve Information Flow in Stochastic Neural Networks (Entropy)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten