MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 2376: Efficient Object Detection Framework and Hardware Architecture for Remote Sensing Images (Remote Sensing)

 
 

14 october 2019 06:02:39

 
Remote Sensing, Vol. 11, Pages 2376: Efficient Object Detection Framework and Hardware Architecture for Remote Sensing Images (Remote Sensing)
 


Object detection in remote sensing images on a satellite or aircraft has important economic and military significance and is full of challenges. This task requires not only accurate and efficient algorithms, but also highperformance and low power hardware architecture. However, existing deep learning based object detection algorithms require further optimization in small objects detection, reduced computational complexity and parameter size. Meanwhile, the generalpurpose processor cannot achieve better power efficiency, and the previous design of deep learning processor has still potential for mining parallelism. To address these issues, we propose an efficient contextbased feature fusion single shot multibox detector (CBFFSSD) framework, using lightweight MobileNet as the backbone network to reduce parameters and computational complexity, adding feature fusion units and detecting feature maps to enhance the recognition of small objects and improve detection accuracy. Based on the analysis and optimization of the calculation of each layer in the algorithm, we propose efficient hardware architecture of deep learning processor with multiple neural processing units (NPUs) composed of 2D processing elements (PEs), which can simultaneously calculate multiple output feature maps. The parallel architecture, hierarchical onchip storage organization, and the local register are used to achieve parallel processing, sharing and reuse of data, and make the calculation of processor more efficient. Extensive experiments and comprehensive evaluations on the public NWPU VHR10 dataset and comparisons with some stateoftheart approaches demonstrate the effectiveness and superiority of the proposed framework. Moreover, for evaluating the performance of proposed hardware architecture, we implement it on Xilinx XC7Z100 field programmable gate array (FPGA) and test on the proposed CBFFSSD and VGG16 models. Experimental results show that our processor are more power efficient than general purpose central processing units (CPUs) and graphics processing units (GPUs), and have better performance density than other stateoftheart FPGAbased designs.


 
246 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 2373: A Bidirectional Analysis Method for Extracting Glacier Crevasses from Airborne LiDAR Point Clouds (Remote Sensing)
Remote Sensing, Vol. 11, Pages 2375: Using Neural Network to Identify the Severity of Wheat Fusarium Head Blight in the Field Environment (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten