MyJournals Home  

RSS FeedsMolecules, Vol. 24, Pages 3706: Insulin Hot-Spot Analogs Formed with N-Methylated Amino Acid Residues Inhibit Aggregation of Native Hormone (Molecules)

 
 

15 october 2019 18:00:45

 
Molecules, Vol. 24, Pages 3706: Insulin Hot-Spot Analogs Formed with N-Methylated Amino Acid Residues Inhibit Aggregation of Native Hormone (Molecules)
 


In this study, N-methylated analogs of hot-spots of insulin were designed and synthesized, in the expectation that they would inhibit the aggregation of both insulin hot-spots and the entire hormone. Synthesis of insulin “amyloidogenic” analogs containing N-methylated amino acid residues was performed by microwave-assisted solid phase according to the Fmoc/tert-Bu strategy. As a coupling reagent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium toluene-4-sulfonate (DMT/NMM/TosO-) was used. Three independent methods were applied in aggregation studies of the complexes of insulin with its N-methylated peptides. Additionally, circular dichroism (CD) measurements were used to confirm that aggregation processes did not occur in the presence of the N-methylated analogs of hot-spot insulin fragments, and that insulin retains its native conformation. Of the seven N-methylated analogs of the A- and B-chain hot-spots of insulin, six inhibited insulin aggregation (peptides 1 and 3–7). All tested peptides were found to have a lower ability to inhibit the aggregation of insulin hot-spots compared to the capability to inhibit native hormone aggregation.


 
236 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 24, Pages 3705: 6-Shogaol Inhibits Advanced Glycation End-Products-Induced IL-6 and ICAM-1 Expression by Regulating Oxidative Responses in Human Gingival Fibroblasts (Molecules)
Molecules, Vol. 24, Pages 3708: In-Vitro Antioxidant, Hypoglycemic Activity, and Identification of Bioactive Compounds in Phenol-Rich Extract from the Marine Red Algae Gracilaria edulis (Gmelin) Silva (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten