MyJournals Home  

RSS FeedsMolecules, Vol. 24, Pages 3729: Evaluation of Chemical Composition of Two Linseed Varieties as Sources of Health-Beneficial Substances (Molecules)

 
 

16 october 2019 23:04:04

 
Molecules, Vol. 24, Pages 3729: Evaluation of Chemical Composition of Two Linseed Varieties as Sources of Health-Beneficial Substances (Molecules)
 


Linseed (Linum usitatissimum L.) is becoming more and more important in the health food market as a functional food, since its seeds and oil represent a rich source of bioactive compounds. Its chemical composition is strongly correlated with, and dependent on, genetic characteristics. The aim of this study was to evaluate the variation in seed yield, oil content, fatty acid composition and secondary metabolite profiles between a low-linolenic linseed variety, belonging to the Solin-type group (Solal), and a high-linolenic traditional one (Bethune), cultivated, both as spring crops, in open field conditions of Central Italy. The achieved results pointed out the different behavior of the two varieties in terms of growth cycle, oil content, and some important yield components, such as capsule number per plant and thousand seed weight. There were also significant differences in seed composition regarding total phenols, total flavonoids, antioxidant activities as well as in carotenoid, tocopherol, and tocotrienol profiles between the two varieties. In particular, Solal was characterized by the greatest contents of oil, phenols, flavonoids, α- and δ- tocotrienol, together with the highest antioxidant activity. Bethune, on the contrary, showed the highest amounts of carotenoids (lutein and β-carotene). These results indicate a clear effect of the genetic characteristics on the biosynthesis of these secondary metabolites and, consequently, on the related antioxidant activity. Our findings suggest that the mutation process, responsible for the selection of the low-linolenic cultivar, is able to modify the biosynthetic pathways of carotenoids and phenolics.


 
185 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 24, Pages 3730: Constituents and Anti-Multidrug Resistance Activity of Taiwanofungus camphoratus on Human Cervical Cancer Cells (Molecules)
Molecules, Vol. 24, Pages 3723: 20(S)-Protopanaxadiol Saponins Mainly Contribute to the Anti-Atherogenic Effects of Panax notoginseng in ApoE Deficient Mice (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten