MyJournals Home  

RSS FeedsEntropy, Vol. 21, Pages 1012: Communication Enhancement through Quantum Coherent Control of N Channels in an Indefinite Causal-Order Scenario (Entropy)

 
 

18 october 2019 19:00:07

 
Entropy, Vol. 21, Pages 1012: Communication Enhancement through Quantum Coherent Control of N Channels in an Indefinite Causal-Order Scenario (Entropy)
 


In quantum Shannon theory, transmission of information is enhanced by quantum features. Up to very recently, the trajectories of transmission remained fully classical. Recently, a new paradigm was proposed by playing quantum tricks on two completely depolarizing quantum channels i.e., using coherent control in space or time of the two quantum channels. We extend here this control to the transmission of information through a network of an arbitrary number N of channels with arbitrary individual capacity i.e., information preservation characteristics in the case of indefinite causal order. We propose a formalism to assess information transmission in the most general case of N channels in an indefinite causal order scenario yielding the output of such transmission. Then, we explicitly derive the quantum switch output and the associated Holevo limit of the information transmission for N = 2 , N = 3 as a function of all involved parameters. We find in the case N = 3 that the transmission of information for three channels is twice that of transmission of the two-channel case when a full superposition of all possible causal orders is used.


 
198 viewsCategory: Informatics, Physics
 
Entropy, Vol. 21, Pages 1013: Permutation Entropy: Enhancing Discriminating Power by Using Relative Frequencies Vector of Ordinal Patterns Instead of Their Shannon Entropy (Entropy)
Entropy, Vol. 21, Pages 1016: Optimized Dimensionality Reduction Methods for Interval-Valued Variables and Their Application to Facial Recognition (Entropy)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten