MyJournals Home  

RSS FeedsIJMS, Vol. 20, Pages 5631: The Bile Acid-Phospholipid Conjugate Ursodeoxycholyl-Lysophosphatidylethanolamide (UDCA-LPE) Disintegrates the Lipid Backbone of Raft Plasma Membrane Domains by the Removal of the Membrane Phospholipase A2 (International Journal of Molecular Sciences)

 
 

11 november 2019 15:02:29

 
IJMS, Vol. 20, Pages 5631: The Bile Acid-Phospholipid Conjugate Ursodeoxycholyl-Lysophosphatidylethanolamide (UDCA-LPE) Disintegrates the Lipid Backbone of Raft Plasma Membrane Domains by the Removal of the Membrane Phospholipase A2 (International Journal of Molecular Sciences)
 


The bile acid-phospholipid conjugate ursodeoxycholyl-lysophosphatidylethanolamide (UDCA-LPE) was shown to have anti-inflammatory, antisteatotic, and antifibrotic properties, rendering it as a drug targeting non-alcoholic steatohepatitis (NASH). On a molecular level, it disrupted the heterotetrameric fatty acid uptake complex localized in detergent-resistant membrane domains of the plasma membrane (DRM-PM). However, its mode of action was unclear. Methodologically, UDCA-LPE was incubated with the liver tumor cell line HepG2 as well as their isolated DRM-PM and all other cellular membranes (non-DRM). The membrane cholesterol and phospholipids were quantified as well as the DRM-PM protein composition by Western blotting. The results show a loss of DRM-PM by UDCA-LPE (50 µM) with a 63.13 ± 7.14% reduction of phospholipids and an 81.94 ± 8.30% reduction of cholesterol in relation to mg total protein. The ratio of phospholipids to cholesterol changed from 2:1 to 4:1, resembling those of non-DRM fractions. Among the members of the fatty acid uptake complex, the calcium-independent membrane phospholipase A2 (iPLA2β) abandoned DRM-PM most rapidly. As a consequence, the other members of this transport system disappeared as well as the DRM-PM anchored fibrosis regulating proteins integrin β-1 and lysophospholipid receptor 1 (LPAR-1). It is concluded that UDCA-LPE executes its action by iPLA2β removal from DRM-PM and consequent dissolution of the raft lipid platform.


 
177 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 20, Pages 5632: Mechanisms of Neuronal Death in the Cerebral Cortex during Aging and Development of Alzheimer`s Disease-Like Pathology in Rats (International Journal of Molecular Sciences)
IJMS, Vol. 20, Pages 5629: Using PAR4 Inhibition as an Anti-Thrombotic Approach: Why, How, and When? (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten