MyJournals Home  

RSS FeedsEnergies, Vol. 12, Pages 4292: High-Efficiency Skutterudite Modules at a Low Temperature Gradient (Energies)

 
 

11 november 2019 18:04:14

 
Energies, Vol. 12, Pages 4292: High-Efficiency Skutterudite Modules at a Low Temperature Gradient (Energies)
 


Thermoelectric skutterudite materials have been widely investigated for their potential application in mid-temperature waste heat recovery that has not been efficiently utilized A large amount of research has focused on developing materials with a high thermoelectric figure of merit (zT). However, the translation of material properties to device performance has limited success. Here, we demonstrate single-filling n-type Yb0.25Fe0.25Co3.75Sb12 and multi-filling La0.7Ti0.1Ga0.1Fe2.7Co1.3Sb12 skutterudites with a maximum zT of ~1.3 at 740 K and ~0.97 at 760 K. The peak zT of skutterudites usually occurs above 800 K, but, as shown here, the shift in peak zT to lower temperatures is beneficial for enhancing conversion efficiency at a lower hot-side temperature. In this work, we have demonstrated that the Fe-substitution significantly reduces the thermal conductivity of n-type skutterudite, closer to p-type skutterudite thermal conductivity, resulting in a module that is more compatible to operate at elevated temperatures. A uni-couple skutterudite module was fabricated using a molybdenum electrode and Ga–Sn liquid metal as the thermal interface material. A conversion efficiency of 7.27% at a low temperature gradient of 366 K was achieved, which is among the highest efficiencies reported in the literature at this temperature gradient. These results highlight that peak zT shift and optimized module design can improve conversion efficiency of thermoelectric modules at a low temperature gradient.


 
169 viewsCategory: Biophysics, Biotechnology, Physics
 
Energies, Vol. 12, Pages 4293: Creating Statistics for China`s Building Energy Consumption Using an Adapted Energy Balance Sheet (Energies)
Energies, Vol. 12, Pages 4288: Production of Carbohydrates from Cardoon Pre-Treated by Acid-Catalyzed Steam Explosion and Enzymatic Hydrolysis (Energies)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten