MyJournals Home  

RSS FeedsSensors, Vol. 19, Pages 4924: Mounting Behaviour Recognition for Pigs Based on Deep Learning (Sensors)

 
 

12 november 2019 14:01:21

 
Sensors, Vol. 19, Pages 4924: Mounting Behaviour Recognition for Pigs Based on Deep Learning (Sensors)
 


For both pigs in commercial farms and biological experimental pigs at breeding bases, mounting behaviour is likely to cause damage such as epidermal wounds, lameness and fractures, and will no doubt reduce animal welfare. The purpose of this paper is to develop an efficient learning algorithm that is able to detect the mounting behaviour of pigs based on the data characteristics of visible light images. Four Göttingen minipigs were selected as experimental subjects and were monitored for a week by a camera that overlooked the pen. The acquired videos were analysed and the frames containing mounting behaviour were intercepted as positive samples of the dataset, and the images with inter-pig adhesion and separated pigs were taken as negative samples. Pig segmentation network based on Mask Region-Convolutional Neural Networks (Mask R-CNN) was applied to extract individual pigs in the frames. The region of interest (RoI) parameters and mask coordinates of each pig, from which eigenvectors were extracted, could be obtained. Subsequently, the eigenvectors were classified with a kernel extreme learning machine (KELM) to determine whether mounting behaviour has occurred. The pig segmentation presented considerable accuracy and mean pixel accuracy (MPA) with 94.92% and 0.8383 respectively. The presented method showed high accuracy, sensitivity, specificity and Matthews correlation coefficient with 91.47%, 95.2%, 88.34% and 0.8324 respectively. This method can be an efficient way of solving the problem of segmentation difficulty caused by partial occlusion and adhesion of pig bodies, even if the pig body colour was similar to the background, in recognition of mounting behaviour.


 
207 viewsCategory: Chemistry, Physics
 
Sensors, Vol. 19, Pages 4927: A Dual Neural Architecture Combined SqueezeNet with OctConv for LiDAR Data Classification (Sensors)
Sensors, Vol. 19, Pages 4926: Data Anomaly Detection for Internet of Vehicles Based on Traffic Cellular Automata and Driving Style (Sensors)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten