MyJournals Home  

RSS FeedsIJMS, Vol. 20, Pages 5686: Conditional Deletion of Dicer in Adult Mice Impairs Skeletal Muscle Regeneration (International Journal of Molecular Sciences)

 
 

13 november 2019 14:00:15

 
IJMS, Vol. 20, Pages 5686: Conditional Deletion of Dicer in Adult Mice Impairs Skeletal Muscle Regeneration (International Journal of Molecular Sciences)
 


Skeletal muscle has a remarkable regenerative capacity, which is orchestrated by multiple processes, including the proliferation, fusion, and differentiation of the resident stem cells in muscle. MicroRNAs (miRNAs) are small noncoding RNAs that mediate the translational repression or degradation of mRNA to regulate diverse biological functions. Previous studies have suggested that several miRNAs play important roles in myoblast proliferation and differentiation in vitro. However, their potential roles in skeletal muscle regeneration in vivo have not been fully established. In this study, we generated a mouse in which the Dicer gene, which encodes an enzyme essential in miRNA processing, was knocked out in a tamoxifen-inducible way (iDicer KO mouse) and determined its regenerative potential after cardiotoxin-induced acute muscle injury. Dicer mRNA expression was significantly reduced in the tibialis anterior muscle of the iDicer KO mice, whereas the expression of muscle-enriched miRNAs was only slightly reduced in the Dicer-deficient muscles. After cardiotoxin injection, the iDicer KO mice showed impaired muscle regeneration. We also demonstrated that the number of PAX7+ cells, cell proliferation, and the myogenic differentiation capacity of the primary myoblasts did not differ between the wild-type and the iDicer KO mice. Taken together, these data demonstrate that Dicer is a critical factor for muscle regeneration in vivo.


 
208 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 20, Pages 5673: DGK? in Neutrophil Biology and Its Implications for Respiratory Diseases (International Journal of Molecular Sciences)
IJMS, Vol. 20, Pages 5688: Neuroplasticity in Cholinergic Projections from the Basal Forebrain to the Basolateral Nucleus of the Amygdala in the Kainic Acid Model of Temporal Lobe Epilepsy (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten