MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 2662: Spectral Diversity Metrics for Detecting Oil Pollution Effect on Biodiversity in the Niger Delta (Remote Sensing)

 
 

14 november 2019 09:00:08

 
Remote Sensing, Vol. 11, Pages 2662: Spectral Diversity Metrics for Detecting Oil Pollution Effect on Biodiversity in the Niger Delta (Remote Sensing)
 


Biodiversity monitoring in the Niger delta has become pertinent in view of the incessant spillages from oil production activities and the socio-economic impact of these spillages on the inhabitants who depend on the resources for their livelihood. Conventional methods of post-impact assessments are expensive, time consuming, and cause damage to the environment, as they often require the removal of affected samples/specimens for laboratory analysis. Remote sensing offers the opportunity to track biodiversity changes from space while using the spectral variability hypothesis (SVH). The SVH proposes that the species diversity of a sampled area is linearly correlated with the variability of spectral reflectance of the area. Several authors have tested the SVH on various land cover types and spatial scales; however, the present study evaluated the validity of the SVH against the backdrop of oil pollution impact on biodiversity while using vascular plant species as surrogates. Species richness and diversity indices were computed from vegetation data collected from polluted and non-polluted transects. Spectral metrics that were derived from Sentinel 2 bands and broadband vegetation indices (BVIs) using various algorithms, including averages, spread, dimension reduction, and so on, were assessed for their ability to estimate vascular plants species richness and diversity. The results showed significant differences in vegetation characteristics of polluted and control transects (H = 76.05, p-value = <0.05 for abundance and H = 170.03, p-value < 0.05 for richness). Spectral diversity metrics correlated negatively with species data on polluted transects and positively on control transects. The metrics computed using Sentinel 2A bands and vegetation indices proved to be sensitive to changes in vegetation characteristics following oil pollution. The most robust relationship was observed between the metrics and indices on control transects, whereas the weakest relationships were observed on polluted transects. Index-wise, the Simpson’s diversity index regressed better with spectral metrics (R2 > 0.5), whereas the Chao-1 richness index regressed the least (R2 < 0.5). The strength of the relationship resulted in successfully estimating species richness and diversity values of investigated transects, thereby enhancing biodiversity monitoring over time and space.


 
238 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 2642: Comparison of Bi-Hemispherical and Hemispherical-Conical Configurations for In Situ Measurements of Solar-Induced Chlorophyll Fluorescence (Remote Sensing)
Remote Sensing, Vol. 11, Pages 2661: Temporal Decorrelation of C-Band Backscatter Coefficient in Mediterranean Burned Areas (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten