MyJournals Home  

RSS FeedsImpact of key residues within chloroplast thioredoxin-f on recognition for reduction and oxidation of target proteins [Bioenergetics] (Journal of Biological Chemistry)

 
 

15 november 2019 11:02:53

 
Impact of key residues within chloroplast thioredoxin-f on recognition for reduction and oxidation of target proteins [Bioenergetics] (Journal of Biological Chemistry)
 


Thioredoxin (Trx) is a redox-responsive protein that modulates the activities of its target proteins mostly by reducing their disulfide bonds. In chloroplasts, five Trx isoforms (Trx-f, Trx-m, Trx-x, Trx-y, and Trx-z) regulate various photosynthesis-related enzymes with distinct target selectivity. To elucidate the determinants of the target selectivity of each Trx isoform, here we investigated the residues responsible for target recognition by Trx-f, the most well-studied chloroplast-resident Trx. As reported previously, we found that positively-charged residues on the Trx-f surface are involved in the interactions with its targets. Moreover, several residues that are specifically conserved in Trx-f (e.g. Cys-126 and Thr-158) were also involved in interactions with target proteins. The validity of these residues was examined by the molecular dynamics simulation. In addition, we validated the impact of these key residues on target protein reduction by studying (i) Trx-m variants into which we introduced the key residues for Trx-f and (ii) Trx-like proteins, named atypical Cys His-rich Trx 1 (ACHT1) and ACHT2a, that also contain these key residues. These artificial or natural protein variants could reduce Trx-f-specific targets, indicating that the key residues for Trx-f are critical for Trx-f-specific target recognition. Furthermore, we demonstrate that ACHT1 and ACHT2a efficiently oxidize some Trx-f-specific targets, suggesting that its target selectivity also contributes to the oxidative regulation process. Our results reveal the key residues for Trx-f-specific target recognition and uncover ACHT1 and ACHT2a as oxidation factors of their target proteins, providing critical insight into redox regulation of photosynthesis.


 
204 viewsCategory: Biochemistry
 
Comparative analysis of the catalytic regulation of NEDD4-1 and WWP2 ubiquitin ligases [Protein Synthesis and Degradation] (Journal of Biological Chemistry)
Myosin motor domains carrying mutations implicated in early or late onset hypertrophic cardiomyopathy have similar properties [Molecular Biophysics] (Journal of Biological Chemistry)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Biochemistry


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten