MyJournals Home  

RSS FeedsSustainability, Vol. 11, Pages 6431: Evaluating the Sustainable Use of Saline Water Irrigation on Soil Water-Salt Content and Grain Yield under Subsurface Drainage Condition (Sustainability)

 
 

15 november 2019 17:03:14

 
Sustainability, Vol. 11, Pages 6431: Evaluating the Sustainable Use of Saline Water Irrigation on Soil Water-Salt Content and Grain Yield under Subsurface Drainage Condition (Sustainability)
 


A sustainable irrigation system is known to improve the farmland soil water-salt environment and increase crop yields. However, the sustainable use of saline irrigation water under proper drainage measures still needs further study. In this study, a two-year experiment was performed to assess the sustainable effects of saline water irrigation under subsurface drainage condition. A coupled model consisting of the HYDRUS-2D model and EPIC module was used to investigate the effects of irrigation water salinity (IWS) and subsurface drainage depth (SDD) on soil water-salt content and summer maize yield when saline water was adopted for irrigation under different subsurface drainage measures. Summer maize in the two-year experiments were irrigated with saline water of three different salinity levels (0.78, 3.75, and 6.25 dS m−1) under three different drainage conditions (no subsurface drainage, drain depth of 80 cm, and drain depth of 120 cm). The field observed data such as soil water content, soil salinity within root zone, ET and grain yield in 2016 and 2017 were used for calibration and validation, respectively. The calibration and validation results indicated that there was good correlation between the field measured data and the HYDRUS-EPIC model simulated data, where RMSE, NSE (> 0.50), and R2 (> 0.70) satisfied the requirements of model accuracy. Based on a seven × seven (IWS × SDD) scenario simulation, the effects of IWS and SDD on summer maize relative grain yield and water use efficiency (WUE) were evaluated in the form of a contour map; the relative grain yield and WUE obtained peak values when drain depth was around 100 cm, where the relative yield of summer maize was about 0.82 and 0.53 at IWS of 8 and 12 dS m−1, and the mean WUE was 1.66 kg m−3. The proper IWS under subsurface drainage systems was also optimized by the scenario simulation results; the summer maize relative yield was still about 0.80 even when the IWS was as high as 8.61 dS m−1. In description, subsurface drainage measures may provide important support for the sustainable utilization of saline water in irrigation. Moreover, the coupled HYDRUS-EPIC model should be a beneficial tool to evaluate future sustainability of the irrigation system.


 
169 viewsCategory: Ecology
 
Sustainability, Vol. 11, Pages 6432: Does Social Capital Increase Innovation Speed? Empirical Evidence from China (Sustainability)
Sustainability, Vol. 11, Pages 6430: Applying Effective Sensory Marketing to Sustainable Coffee Shop Business Management (Sustainability)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Ecology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten