MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 2683: Urban-Rural Surface Temperature Deviation and Intra-Urban Variations Contained by an Urban Growth Boundary (Remote Sensing)

 
 

16 november 2019 15:01:03

 
Remote Sensing, Vol. 11, Pages 2683: Urban-Rural Surface Temperature Deviation and Intra-Urban Variations Contained by an Urban Growth Boundary (Remote Sensing)
 


The urban heat island (UHI) concept describes heat trapping that elevates urban temperatures relative to rural temperatures, at least in temperate/humid regions. In drylands, urban irrigation can instead produce an urban cool island (UCI) effect. However, the UHI/UCI characterization suffers from uncertainty in choosing representative urban/rural endmembers, an artificial dichotomy between UHIs and UCIs, and lack of consistent terminology for other patterns of thermal variation at nested scales. We use the case of a historically well-enforced urban growth boundary (UGB) around Portland (Oregon, USA): to explore the representativeness of the surface temperature UHI (SUHI) as derived from Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature data, to test common assumptions of characteristically “warm” or “cool” land covers (LCs), and to name other common urban thermal features of interest. We find that the UGB contains heat as well as sprawl, inducing a sharp surface temperature contrast across the urban/rural boundary. The contrast ranges widely depending on the end-members chosen, across a spectrum from positive (SUHI) to negative (SUCI) values. We propose a new, inclusive “urban thermal deviation” (UTD) term to span the spectrum of possible UHI-zero-UCI conditions. We also distinguish at finer scales “microthermal extremes” (MTEs), discrete areas tending in the same thermal direction as their LC or surroundings but to extreme (hot or cold) values, and microthermal anomalies (MTAs), that run counter to thermal expectations or tendencies for their LC or surroundings. The distinction is important because MTEs suggest a need for moderation in the local thermal landscape, whereas MTAs may suggest solutions.


 
169 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 2674: Robust, Model-Based External Calibration of Multi-Channel Airborne SAR Sensors Using Range Compressed Raw Data (Remote Sensing)
Remote Sensing, Vol. 11, Pages 2682: New Results from Strapdown Airborne Gravimetry Using Temperature Stabilisation (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten