MyJournals Home  

RSS FeedsMaterials, Vol. 12, Pages 3818: Fabrication of High Permittivity Resin Composite for Vat Photopolymerization 3D Printing: Morphology, Thermal, Dynamic Mechanical and Dielectric Properties (Materials)

 
 

20 november 2019 18:01:11

 
Materials, Vol. 12, Pages 3818: Fabrication of High Permittivity Resin Composite for Vat Photopolymerization 3D Printing: Morphology, Thermal, Dynamic Mechanical and Dielectric Properties (Materials)
 


The formulation of a high dielectric permittivity ceramic/polymer composite feedstock for daylight vat photopolymerization 3D printing (3DP) is demonstrated, targeting 3DP of devices for microwave and THz applications. The precursor is composed of a commercial visible light photo-reactive polymer (VIS-curable photopolymer) and dispersed titanium dioxide (TiO2, TO) ceramic nano-powder or calcium copper titanate (CCT) micro-powder. To provide consistent 3DP processing from the formulated feedstocks, the carefully chosen dispersant performed the double function of adjusting the overall viscosity of the photopolymer and provided good matrix-to-filler bonding. Depending on the ceramic powder content, the optimal viscosities for reproducible 3DP with resolution better than 100 µm were η(TO) = 1.20 ± 0.02 Pa.s and η (CCT) = 0.72 ± 0.05 Pa.s for 20% w/v TO/resin and 20% w/v CCT/resin composites at 0.1 s−1 respectively, thus showing a significant dependence of the “printability” on the dispersed particle sizes. The complex dielectric properties of the as-3D printed samples from pure commercial photopolymer and the bespoke ceramic/photopolymer mixes are investigated at 2.5 GHz, 5 GHz, and in the 12–18 GHz frequency range. The results show that the addition of 20% w/v of TO and CCT ceramic powder to the initial photopolymer increased the real part of the permittivity of the 3DP composites from ε’ = 2.7 ± 0.02 to ε’(TO) = 3.88 ± 0.02 and ε’(CCT) = 3.5 ± 0.02 respectively. The present work can be used as a guideline for high-resolution 3DP of structures possessing high-ε.


 
178 viewsCategory: Chemistry, Physics
 
[ASAP] Detecting Semiconductor Nanoplatelets with Distinctive Crystal Structures and Thickness by Magnetic Circular Dichroism (Journal of Physical Chemistry C)
Materials, Vol. 12, Pages 3817: FE Analysis of Critical Testing Parameters in Kolsky Bar Experiments for Elastomers at High Strain Rate (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten