MyJournals Home  

RSS FeedsMolecules, Vol. 24, Pages 4473: Suppressive Interaction Approach for Masking Stale Note of Instant Ripened Pu-Erh Tea Products (Molecules)

 
 

6 december 2019 13:03:52

 
Molecules, Vol. 24, Pages 4473: Suppressive Interaction Approach for Masking Stale Note of Instant Ripened Pu-Erh Tea Products (Molecules)
 


The unpleasant stale note is a negative factor hindering the consumption of instant ripened Pu-erh tea products. This study focused on investigating volatile chemicals in instant ripened Pu-erh tea that could mask the stale note via sensory evaluation, gas chromatography-mass spectrometry (GC-MS), and gas chromatography-olfactometry (GC-O) analyses. GC-MS and GC-O analyses showed that linalool, linalool oxides, trans-β-ionone, benzeneacetaldehyde, and methoxybenzenes were the major aroma contributors to the simultaneous distillation and extraction (SDE) extract of instant ripened Pu-erh tea. Sensory evaluation showed that the SDE extract had a strong stale note, which was due to methoxybenzenes. By investigating suppressive interaction among flavour components, the stale note from methoxybenzenes was shown to have reciprocal masking interactions with sweet, floral, and green notes. Moreover, the validation experiment showed that the addition of 40 μg/mL of trans-β-ionone in the instant ripened Pu-erh tea completely masked the stale note and improved the overall aromatic acceptance. These results elucidate the volatile chemicals that could mask the stale note of instant ripened Pu-erh tea products, which might help to develop high quality products made from instant ripened Pu-erh tea.


 
246 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 24, Pages 4472: Are the Hydantoin-1,3,5-triazine 5-HT6R Ligands a Hope to a Find New Procognitive and Anti-Obesity Drug? Considerations Based on Primary In Vivo Assays and ADME-Tox Profile In Vitro (Molecules)
Molecules, Vol. 24, Pages 4471: Synthesis and Anti-Proliferative Assessment of Triazolo-Thiadiazepine and Triazolo-Thiadiazine Scaffolds (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten