MyJournals Home  

RSS FeedsThe neural stem cell/carnitine malnutrition hypothesis: new prospects for effective reduction of autism risk? [Developmental Biology] (Journal of Biological Chemistry)

 
 

13 december 2019 11:02:47

 
The neural stem cell/carnitine malnutrition hypothesis: new prospects for effective reduction of autism risk? [Developmental Biology] (Journal of Biological Chemistry)
 


Autism spectrum disorders (ASDs) are developmental neuropsychiatric disorders with heterogeneous etiologies. As the incidence of these disorders is rising, such disorders represent a major human health problem with escalating social cost. Although recent years witnessed advances in our understanding of the genetic basis of some dysmorphic ASDs, little progress has been made in translating the improved understanding into effective strategies for ASD management or minimization of general ASD risk. Here we explore the idea, described in terms of the neural stem cell (NSC)/carnitine malnutrition hypothesis, that an unappreciated risk factor for ASD is diminished capacity for carnitine-dependent long-chain fatty acid ?-oxidation in neural stem cells of the developing mammalian brain. The basic premise is that fetal carnitine status is a significant metabolic component in determining NSC vulnerability to derangements in their self-renewal program and, therefore, to fetal ASD risk. As fetal carnitine status exhibits a genetic component that relates to de novo carnitine biosynthesis and is sensitive to environmental and behavioral factors that affect maternal circulating carnitine levels, to which the fetus is exposed, we propose that reduced carnitine availability during gestation is a common risk factor that lurks beneath the genetically complex ASD horizon. One major prediction of the NSC/carnitine malnutrition hypothesis is that a significant component of ASD risk might be effectively managed from a public policy perspective by implementing a carnitine surveillance and dietary supplementation strategy for women planning pregnancies and for women in their first trimester of pregnancy. We argue that this prediction deserves serious clinical interrogation.


 
258 viewsCategory: Biochemistry
 
Substrate structure-activity relationship reveals a limited lipopolysaccharide chemotype range for intestinal alkaline phosphatase [Enzymology] (Journal of Biological Chemistry)
Designing protein structures and complexes with the molecular modeling program Rosetta [Computational Biology] (Journal of Biological Chemistry)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Biochemistry


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten