MyJournals Home  

RSS FeedsIJMS, Vol. 20, Pages 6293: Pre-Treatment with Ten-Minute Carbon Dioxide Inhalation Prevents Lipopolysaccharide-Induced Lung Injury in Mice via Down-Regulation of Toll-Like Receptor 4 Expression (International Journal of Molecular Sciences)

 
 

13 december 2019 18:01:46

 
IJMS, Vol. 20, Pages 6293: Pre-Treatment with Ten-Minute Carbon Dioxide Inhalation Prevents Lipopolysaccharide-Induced Lung Injury in Mice via Down-Regulation of Toll-Like Receptor 4 Expression (International Journal of Molecular Sciences)
 


Various animal studies have shown beneficial effects of hypercapnia in lung injury. However, in patients with acute respiratory distress syndrome (ARDS), there is controversial information regarding the effect of hypercapnia on outcomes. The duration of carbon dioxide inhalation may be the key to the protective effect of hypercapnia. We investigated the effect of pre-treatment with inhaled carbon dioxide on lipopolysaccharide (LPS)-induced lung injury in mice. C57BL/6 mice were randomly divided into a control group or an LPS group. Each LPS group received intratracheal LPS (2 mg/kg); the LPS groups were exposed to hypercapnia (5% carbon dioxide) for 10 min or 60 min before LPS. Bronchoalveolar lavage fluid (BALF) and lung tissues were collected to evaluate the degree of lung injury. LPS significantly increased the ratio of lung weight to body weight; concentrations of BALF protein, tumor necrosis factor-α, and CXCL2; protein carbonyls; neutrophil infiltration; and lung injury score. LPS induced the degradation of the inhibitor of nuclear factor-κB-α (IκB-α) and nuclear translocation of NF-κB. LPS increased the surface protein expression of toll-like receptor 4 (TLR4). Pre-treatment with inhaled carbon dioxide for 10 min, but not for 60 min, inhibited LPS-induced pulmonary edema, inflammation, oxidative stress, lung injury, and TLR4 surface expression, and, accordingly, reduced NF-κB signaling. In description, our data demonstrated that pre-treatment with 10-min carbon dioxide inhalation can ameliorate LPS-induced lung injury. The protective effect may be associated with down-regulation of the surface expression of TLR4 in the lungs.


 
234 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 20, Pages 6296: Irradiated Human Fibroblasts as a Substitute Feeder Layer to Irradiated Mouse 3T3 for the Culture of Human Corneal Epithelial Cells: Impact on the Stability of the Transcription Factors Sp1 and NFI (International Journal of Molecular Sciences)
IJMS, Vol. 20, Pages 6295: Thermo-Responsive Polymer Brushes with Side Graft Chains: Relationship Between Molecular Architecture and Underwater Adherence (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten