MyJournals Home  

RSS FeedsMaterials, Vol. 13, Pages 425: Beyond Lithium-Based Batteries (Materials)

 
 

16 january 2020 15:04:25

 
Materials, Vol. 13, Pages 425: Beyond Lithium-Based Batteries (Materials)
 




We discuss the latest developments in alternative battery systems based on sodium, magnesium, zinc and aluminum. In each case, we categorize the individual metals by the overarching cathode material type, focusing on the energy storage mechanism. Specifically, sodium-ion batteries are the closest in technology and chemistry to today’s lithium-ion batteries. This lowers the technology transition barrier in the short term, but their low specific capacity creates a long-term problem. The lower reactivity of magnesium makes pure Mg metal anodes much safer than alkali ones. However, these are still reactive enough to be deactivated over time. Alloying magnesium with different metals can solve this problem. Combining this with different cathodes gives good specific capacities, but with a lower voltage (<1.3 V, compared with 3.8 V for Li-ion batteries). Zinc has the lowest theoretical specific capacity, but zinc metal anodes are so stable that they can be used without alterations. This results in comparable capacities to the other materials and can be immediately used in systems where weight is not a problem. Theoretically, aluminum is the most promising alternative, with its high specific capacity thanks to its three-electron redox reaction. However, the trade-off between stability and specific capacity is a problem. After analyzing each option separately, we compare them all via a political, economic, socio-cultural and technological (PEST) analysis. The review concludes with recommendations for future applications in the mobile and stationary power sectors.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
24 viewsCategory: Chemistry, Physics
 
Materials, Vol. 13, Pages 426: The Improvement of Moisture Resistance and Organic Compatibility of SrAl2O4: Eu2+, Dy3+ Persistent Phosphors Coated with Silica-Polymer Hybrid Shell (Materials)
Materials, Vol. 13, Pages 421: Simulation of Thermal Behavior of Glass Fiber/Phenolic Composites Exposed to Heat Flux on One Side (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2020 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn