MyJournals Home  

RSS FeedsMarine Drugs, Vol. 18, Pages 109: Identification of Prostaglandin Pathway in Dinoflagellates by Transcriptome Data Mining (Marine Drugs)

 
 

13 february 2020 14:00:41

 
Marine Drugs, Vol. 18, Pages 109: Identification of Prostaglandin Pathway in Dinoflagellates by Transcriptome Data Mining (Marine Drugs)
 




Dinoflagellates, a major class of marine eukaryote microalgae composing the phytoplankton, are widely recognised as producers of a large variety of toxic molecules, particularly neurotoxins, which can also act as potent bioactive pharmacological mediators. In addition, similarly to other microalgae, they are also good producers of polyunsaturated fatty acids (PUFAs), important precursors of key molecules involved in cell physiology. Among PUFA derivatives are the prostaglandins (Pgs), important physiological mediators in several physiological and pathological processes in humans, also used as “biological” drugs. Their synthesis is very expensive because of the elevated number of reaction steps required, thus the search for new Pgs production methods is of great relevance. One possibility is their extraction from microorganisms (e.g., diatoms), which have been proved to produce the same Pgs as humans. In the present study, we took advantage of the available transcriptomes for dinoflagellates in the iMicrobe database to search for the Pgs biosynthetic pathway using a bioinformatic approach. Here we show that dinoflagellates express nine Pg-metabolism related enzymes involved in both Pgs synthesis and reduction. Not all of the enzymes were expressed simultaneously in all the species analysed and their expression was influenced by culturing conditions, especially salinity of the growth medium. These results confirm the existence of a biosynthetic pathway for these important molecules in unicellular microalgae other than diatoms, suggesting a broad diffusion and conservation of the Pgs pathway, which further strengthen their importance in living organisms.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
33 viewsCategory: Biochemistry, Molecular Biology, Pharmacology
 
Marine Drugs, Vol. 18, Pages 110: Antitumor Activity of Asperphenin A, a Lipopeptidyl Benzophenone from Marine-Derived Aspergillus sp. Fungus, by Inhibiting Tubulin Polymerization in Colon Cancer Cells (Marine Drugs)
Marine Drugs, Vol. 18, Pages 112: Investigating the Antiparasitic Potential of the Marine Sesquiterpene Avarone, Its Reduced form Avarol, and the Novel Semisynthetic Thiazinoquinone Analogue Thiazoavarone (Marine Drugs)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Pharmacology

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2020 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn