MyJournals Home  

RSS FeedsMolecules, Vol. 25, Pages 832: Analytical Technique Optimization on the Detection of ?-cyclocitral in Microcystis Species (Molecules)


14 february 2020 19:03:19

Molecules, Vol. 25, Pages 832: Analytical Technique Optimization on the Detection of ?-cyclocitral in Microcystis Species (Molecules)

β-Cyclocitral, specifically produced by Microcystis, is one of the volatile organic compounds (VOCs) derived from cyanobacteria and has a lytic activity. It is postulated that β-cyclocitral is a key compound for regulating the occurrence of cyanobacteria and related microorganisms in an aquatic environment. β-Cyclocitral is sensitively detected when a high density of the cells is achieved from late summer to autumn. Moreover, it is expected to be involved in changes in the species composition of cyanobacteria in a lake. Although several analysis methods for β-cyclocitral have already been reported, β-cyclocitral could be detected using only solid phase micro-extraction (SPME), whereas it could not be found at all using the solvent extraction method in a previous study. In this study, we investigated why β-cyclocitral was detected using only SPME GC/MS. Particularly, three operations in SPME, i.e., extraction temperature, sample stirring rate, and the effect of salt, were examined for the production of β-cyclocitral. Among these, heating (60 °C) was critical for the β-cyclocitral formation. Furthermore, acidification with a 1-h storage was more effective than heating when comparing the obtained amounts. The present results indicated that β-cyclocitral did not exist as the intact form in cells, because it was formed by heating or acidification of the resulting intermediates during the analysis by SPME. The obtained results would be helpful to understand the formation and role of β-cyclocitral in an aquatic environment. Digg Facebook Google StumbleUpon Twitter
22 viewsCategory: Biochemistry, Chemistry, Molecular Biology
Molecules, Vol. 25, Pages 833: Microfluidics in Haemostasis: A Review (Molecules)
Molecules, Vol. 25, Pages 831: Synthesis of Natural (-)-Antrocin and its Enantiomer via Stereoselective Aldol Reaction (Molecules)
blog comments powered by Disqus
The latest issues of all your favorite science journals on one page


Register | Retrieve


Molecular Biology

Use these buttons to bookmark us: Digg Facebook Google StumbleUpon Twitter

Valid HTML 4.01 Transitional
Copyright © 2008 - 2020 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn