MyJournals Home  

RSS FeedsRemote Sensing, Vol. 12, Pages 638: Historical Aerial Surveys Map Long-Term Changes of Forest Cover and Structure in the Central Congo Basin (Remote Sensing)

 
 

14 february 2020 19:03:26

 
Remote Sensing, Vol. 12, Pages 638: Historical Aerial Surveys Map Long-Term Changes of Forest Cover and Structure in the Central Congo Basin (Remote Sensing)
 




Given the impact of tropical forest disturbances on atmospheric carbon emissions, biodiversity, and ecosystem productivity, accurate long-term reporting of Land-Use and Land-Cover (LULC) change in the pre-satellite era (<1972) is an imperative. Here, we used a combination of historical (1958) aerial photography and contemporary remote sensing data to map long-term changes in the extent and structure of the tropical forest surrounding Yangambi (DR Congo) in the central Congo Basin. Our study leveraged structure-from-motion and a convolutional neural network-based LULC classifier, using synthetic landscape-based image augmentation to map historical forest cover across a large orthomosaic (~93,431 ha) geo-referenced to ~4.7 ± 4.3 m at submeter resolution. A comparison with contemporary LULC data showed a shift from previously highly regular industrial deforestation of large areas to discrete smallholder farming clearing, increasing landscape fragmentation and providing opportunties for substantial forest regrowth. We estimated aboveground carbon gains through reforestation to range from 811 to 1592 Gg C, partially offsetting historical deforestation (2416 Gg C), in our study area. Efforts to quantify long-term canopy texture changes and their link to aboveground carbon had limited to no success. Our analysis provides methods and insights into key spatial and temporal patterns of deforestation and reforestation at a multi-decadal scale, providing a historical context for past and ongoing forest research in the area.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
19 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 12, Pages 642: Classification of Rainfall Types Using Parsivel Disdrometer and S-band Polarimetric Radar in Central Korea (Remote Sensing)
Remote Sensing, Vol. 12, Pages 641: Characterizing and Mitigating Sensor Generated Spatial Correlations in Airborne Hyperspectral Imaging Data (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2020 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn