MyJournals Home  

RSS FeedsIJMS, Vol. 23, Pages 7116: Transcriptome and Quasi-Targeted Metabolome Analyze Overexpression of 4-Hydroxyphenylpyruvate Dioxygenase Alleviates Fungal Toxicity of 9-Phenanthrol in Magnaporthe oryzae (International Journal of Molecular Sciences)

 
 

27 june 2022 05:28:27

 
IJMS, Vol. 23, Pages 7116: Transcriptome and Quasi-Targeted Metabolome Analyze Overexpression of 4-Hydroxyphenylpyruvate Dioxygenase Alleviates Fungal Toxicity of 9-Phenanthrol in Magnaporthe oryzae (International Journal of Molecular Sciences)
 


Magnaporthe oryzae, the causal agent of rice blast disease, produces devastating damage to global rice production. It is urgent to explore novel strategies to overcome the losses caused by this disease. 9-phenanthrol is often used as a transient receptor potential melastatin 4 (TRPM4) channel inhibitor for animals, but we found its fungal toxicity to M. oryzae. Thus, we explored the antimicrobial mechanism through transcriptome and metabolome analyses. Moreover, we found that overexpression of a gene encoding 4-hydroxyphenylpyruvate dioxygenase involved in the tyrosine degradative pathway enhanced the tolerance of 9-phenanthrol in M. oryzae. Thus, our results highlight the potential fungal toxicity mechanism of 9-phenanthrol at metabolic and transcriptomic levels and identify a gene involving 9-phenanthrol alleviation. Importantly, our results demonstrate the novel mechanism of 9-phenanthrol on fungal toxicity that will provide new insights of 9-phenanthrol for application on other organisms.


 
152 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 23, Pages 7115: Deoxyshikonin Mediates Heme Oxygenase-1 Induction and Apoptotic Response via p38 Signaling in Tongue Cancer Cell Lines (International Journal of Molecular Sciences)
IJMS, Vol. 23, Pages 7117: Sera of Neuromyelitis Optica Patients Increase BID-Mediated Apoptosis in Astrocytes (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten