MyJournals Home  

RSS FeedsMaterials, Vol. 12, Pages 1601: Structural, Magnetic and Electronic Properties of 3d Transition-Metal Atoms Adsorbed Monolayer BC2N: A First-principles Study (Materials)

 
 

16 may 2019 13:04:08

 
Materials, Vol. 12, Pages 1601: Structural, Magnetic and Electronic Properties of 3d Transition-Metal Atoms Adsorbed Monolayer BC2N: A First-principles Study (Materials)
 


Based on the monolayer BC2N structure, the structural, electronic and magnetic properties of 3d transition metal (TM) atoms (V, Cr, Mn, Fe, Co and Ni) adsorbed on the monolayer BC2N, are studied by using the first principle method. The results show that 3d transition metal atoms are stably adsorbed on the monolayer BC2N. The most stable adsorption sites for V, Cr, and Mn atoms are the hollow adsorption site (H) of BC2N, while the other 3d TM atoms (Fe, Co, Ni) are more readily adsorbed above the C atoms (Tc). The majority of TM atoms are chemically adsorbed on BC2N, whereas Cr and Mn atoms are physically adsorbed on BC2N. Except for Ni, most 3d transition metal atoms can induce the monolayer BC2N magnetization, and the spin-charge density indicated that the magnetic moments of the adsorption systems are mainly concentrated on the TM atoms. Moreover, the introduction of TM atoms can modulate the electronic structure of a single layer of BC2N, making it advantageous for spintronic applications, and for the development of magnetic nanostructures.


 
74 viewsCategory: Chemistry, Physics
 
Materials, Vol. 12, Pages 1602: Effects of T6 Treatment, Tensile Temperature, and Mass Fraction of SiC on the Mechanical Properties of SiCp/6061Al Composites (Materials)
Materials, Vol. 12, Pages 1600: Studies on Pitting Corrosion of Al-Cu-Li Alloys Part I: Effect of Li Addition by Microstructural, Electrochemical, In-situ, and Pit Depth Analysis (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten